in

A climate risk index for marine life

  • Urban, M. C. Accelerating extinction risk from climate change. Science 348, 571–573 (2015).

    CAS 
    Article 

    Google Scholar 

  • Brown, S. C., Wigley, T. M. L., Otto-Bliesner, B. L., Rahbek, C. & Fordham, D. A. Persistent Quaternary climate refugia are hospices for biodiversity in the Anthropocene. Nat. Clim. Change 10, 244–248 (2020).

    Article 

    Google Scholar 

  • O’Hara, C. C., Frazier, M. & Halpern, B. S. At-risk marine biodiversity faces extensive, expanding, and intensifying human impacts. Science 372, 84–87 (2021).

    Article 
    CAS 

    Google Scholar 

  • Halpern, B. S. et al. An index to assess the health and benefits of the global ocean. Nature 488, 615–620 (2012).

    CAS 
    Article 

    Google Scholar 

  • Free, C. M. et al. Impacts of historical warming on marine fisheries production. Science 363, 979–983 (2019).

    CAS 
    Article 

    Google Scholar 

  • Costello, C. et al. The future of food from the sea. Nature 588, 95–100 (2020).

    CAS 
    Article 

    Google Scholar 

  • Lotze, H. K., Bryndum-Buchholz, A. & Boyce, D. G. in The Impacts of Climate Change: Comprehensive Study of the Physical, Societal and Political Issues (ed. Letcher, T.) 205–231 (Elsevier, 2021); https://doi.org/10.1016/B978-0-12-822373-4.00017-3

  • Boyce, D. G., Lotze, H. K., Tittensor, D. P., Carozza, D. A. & Worm, B. Future ocean biomass losses may widen socioeconomic equity gaps. Nat. Commun. 11, 2235 (2020).

    CAS 
    Article 

    Google Scholar 

  • Tittensor, D. P. et al. Integrating climate adaptation and biodiversity conservation in the global ocean. Sci. Adv. 5, 2235 (2019).

    Article 

    Google Scholar 

  • Wilson, K. L., Tittensor, D. P., Worm, B. & Lotze, H. K. Incorporating climate change adaptation into marine protected area planning. Glob. Change Biol. 26, 3251–3267 (2020).

    Article 

    Google Scholar 

  • Barange, M. et al. (eds) Impacts of Climate Change on Fisheries and Aquaculture: Synthesis of Current Knowledge, Adaptation and Mitigation Options FAO Fisheries and Aquaculture Technical Paper No. 627 (FAO, 2018).

  • Hare, J. A. et al. A vulnerability assessment of fish and invertebrates to climate change on the northeast U.S. continental shelf. PLoS ONE 11, 1–654 (2016).

    CAS 
    Article 

    Google Scholar 

  • Boyce, D. G., Fuller, S., Karbowski, C., Schleit, K. & Worm, B. Leading or lagging: how well are climate change considerations being incorporated into Canadian fisheries management? Can. J. Fish. Aquat. Sci. 78, 1120–1129 (2021).

    Article 

    Google Scholar 

  • IPCC Climate Change 2014: Impacts, Adaptation, and Vulnerability (eds Field, C. B. et al.) (Cambridge Univ. Press, 2014).

  • Pacifici, M. et al. Assessing species vulnerability to climate change. Nat. Clim. Change 5, 215–225 (2015).

    Article 

    Google Scholar 

  • de los Ríos, C., Watson, J. E. M. & Butt, N. Persistence of methodological, taxonomical, and geographical bias in assessments of species’ vulnerability to climate change: a review. Glob. Ecol. Conserv. 15, e00412 (2018).

    Article 

    Google Scholar 

  • Foden, W. B. et al. Climate change vulnerability assessment of species. WIREs Clim. Change 10, e551 (2019).

    Article 

    Google Scholar 

  • Comte, L. & Olden, J. D. Climatic vulnerability of the world’s freshwater and marine fishes. Nat. Clim. Change 7, 718–722 (2017).

    Article 

    Google Scholar 

  • Albouy, C. et al. Global vulnerability of marine mammals to global warming. 1–12 (2020).

  • Foden, W. B. et al. Identifying the world’s most climate change vulnerable species: a systematic trait-based assessment of all birds, amphibians and corals. PLoS ONE 8, e65427 (2013).

    CAS 
    Article 

    Google Scholar 

  • Kesner-Reyes, K. et al. AquaMaps: algorithm and data sources for aquatic organisms. In FishBase v.04/2012 (eds. Froese, R. & Pauly, D.) www.fishbase.org (2016).

  • Stuart-Smith, R. D., Edgar, G. J., Barrett, N. S., Kininmonth, S. J. & Bates, A. E. Thermal biases and vulnerability to warming in the world’s marine fauna. Nature 528, 88–92 (2015).

    CAS 
    Article 

    Google Scholar 

  • Trisos, C. H., Merow, C. & Pigot, A. L. The projected timing of abrupt ecological disruption from climate change. Nature 580, 496–501 (2020).

    CAS 
    Article 

    Google Scholar 

  • Cheung, W. W. L., Watson, R., Morato, T., Pitcher, T. J. & Pauly, D. Intrinsic vulnerability in the global fish catch. Mar. Ecol. Prog. Ser. 333, 1–12 (2007).

    Article 

    Google Scholar 

  • IPCC Climate Change 2021: The Physical Science Basis (eds Masson-Delmotte, V. et al.) (Cambridge Univ. Press, in the press).

  • IPCC Climate Change 2001: Impacts, Adaptation, and Vulnerability (eds McCarthy, J. J. et al.) (Cambridge Univ. Press, 2001).

  • The IUCN Red List of Threatened Species v.2021-1 (IUCN, 2021); https://www.iucnredlist.org

  • Tittensor, D. P. et al. Global patterns and predictors of marine biodiversity across taxa. Nature 466, 1098–1101 (2010).

    CAS 
    Article 

    Google Scholar 

  • Rogers, A. et al. Critical Habitats and Biodiversity: Inventory, Thresholds and Governance. Sci. Rep. 10, 548 (World Resources Institute, 2020).

  • Sala, E. et al. Protecting the global ocean for biodiversity, food and climate. Nature 592, 397–402 (2021).

    CAS 
    Article 

    Google Scholar 

  • Halpern, B. S. et al. Spatial and temporal changes in cumulative human impacts on the world’s ocean. Nat. Commun. 6, 7615 (2015).

    CAS 
    Article 

    Google Scholar 

  • Pontavice, H., Gascuel, D., Reygondeau, G., Stock, C. & Cheung, W. W. L. Climate‐induced decrease in biomass flow in marine food webs may severely affect predators and ecosystem production. Glob. Change Biol. 27, 2608–2622 (2021).

    Article 
    CAS 

    Google Scholar 

  • Estes, J. A., Heithaus, M., McCauley, D. J., Rasher, D. B. & Worm, B. Megafaunal impacts on structure and function of ocean ecosystems. Annu. Rev. Environ. Res. 41, 83–116 (2016).

    Article 

    Google Scholar 

  • Jenkins, C. N., Pimm, S. L. & Joppa, L. N. Global patterns of terrestrial vertebrate diversity and conservation. Proc. Natl Acad. Sci. USA 110, E2602–E2610 (2013).

    CAS 
    Article 

    Google Scholar 

  • Moilanen, A., Kujala, H. & Mikkonen, N. A practical method for evaluating spatial biodiversity offset scenarios based on spatial conservation prioritization outputs. Methods Ecol. Evol. 11, 794–803 (2020).

    Article 

    Google Scholar 

  • Ceballos, G. & Ehrlich, P. R. Global mammal distributions, biodiversity hotspots, and conservation. Proc. Natl Acad. Sci. USA 103, 19374–19379 (2006).

    CAS 
    Article 

    Google Scholar 

  • Williams, P. H., Gaston, K. J. & Humphries, C. J. Mapping biodiversity value worldwide: combining higher-taxon richness from different groups. Proc. R. Soc. Lond. B 264, 141–148 (1997).

    Article 

    Google Scholar 

  • Blanchard, J. L. et al. Linked sustainability challenges and trade-offs among fisheries, aquaculture and agriculture. Nat. Ecol. Evol. 1, 1240–1249 (2017).

    Article 

    Google Scholar 

  • Robiou Du Pont, Y. et al. Equitable mitigation to achieve the Paris Agreement goals. Nat. Clim. Change 7, 38–43 (2017).

    Article 

    Google Scholar 

  • Payne, N. L. et al. Fish heating tolerance scales similarly across individual physiology and populations. Commun. Biol. 4, 264 (2021).

    Article 

    Google Scholar 

  • First Draft of the Post-2020 Global Biodiversity Framework (Convention on Biological Diversity, 2021).

  • Keppel, G. et al. Refugia: identifying and understanding safe havens for biodiversity under climate change. Glob. Ecol. Biogeogr. 21, 393–404 (2012).

    Article 

    Google Scholar 

  • Bryndum‐Buchholz, A., Tittensor, D. P. & Lotze, H. K. The status of climate change adaptation in fisheries management: policy, legislation and implementation. Fish Fish. https://doi.org/10.1111/faf.12586 (2021).

  • Maureaud, A. et al. Are we ready to track climate‐driven shifts in marine species across international boundaries? A global survey of scientific bottom trawl data. Glob. Change Biol. 27, 220–236 (2021).

    Article 
    CAS 

    Google Scholar 

  • Boyce, D. G. et al. Operationalizing climate risk for fisheries in a global warming hotspot. Preprint at: https://doi.org/10.1101/2022.07.19.500650 (2022).

  • Estes, J. A. et al. Trophic downgrading of planet Earth. Science 333, 301–306 (2011).

    CAS 
    Article 

    Google Scholar 

  • Olden, J. D., Hogan, Z. S. & Vander Zanden, M. J. Small fish, big fish, red fish, blue fish: size-biased extinction risk of the world’s freshwater and marine fishes. Glob. Ecol. Biogeogr. 16, 694–701 (2007).

    Article 

    Google Scholar 

  • Tittensor, D. P. et al. A mid-term analysis of progress toward international biodiversity targets. Science 346, 241–244 (2014).

    CAS 
    Article 

    Google Scholar 

  • Pinsky, M. L., Eikeset, A. M., McCauley, D. J., Payne, J. L. & Sunday, J. M. Greater vulnerability to warming of marine versus terrestrial ectotherms. Nature https://doi.org/10.1038/s41586-019-1132-4 (2019).

  • Sunday, J. M., Bates, A. E. & Dulvy, N. K. Thermal tolerance and the global redistribution of animals. Nat. Clim. Change 2, 686–690 (2012).

    Article 

    Google Scholar 

  • Laidre, K. L. et al. Quantifying the sensitivity of Arctic marine mammals to climate-induced habitat change. Ecol. Appl. 18, S97–S125 (2008).

    Article 

    Google Scholar 

  • Rosset, V. & Oertli, B. Freshwater biodiversity under climate warming pressure: identifying the winners and losers in temperate standing waterbodies. Biol. Conserv. 144, 2311–2319 (2011).

    Article 

    Google Scholar 

  • Peters, R. L. The greenhouse effect and nature reserves. Biosciences 35, 707–717 (1985).

    Article 

    Google Scholar 

  • Garcia, R. A. et al. Matching species traits to projected threats and opportunities from climate change. J. Biogeogr. 41, 724–735 (2014).

    Article 

    Google Scholar 

  • IUCN Red List Categories and Criteria: Version 3.1 (IUCN, 2012).

  • Worm, B. et al. Impacts of biodiversity loss on ocean ecosystem services. Science 314, 787–790 (2006).

    CAS 
    Article 

    Google Scholar 

  • Worm, B., Lotze, H. K., Hillebrand, H. & Sommer, U. Consumer versus resource control of species diversity and ecosystem functioning. Nature 417, 848–851 (2002).

    CAS 
    Article 

    Google Scholar 

  • Worm, B. & Duffy, J. E. Biodiversity, productivity, and stability in real food webs. Trends Ecol. Evol. 18, 628–632 (2003).

    Article 

    Google Scholar 

  • Halpern, B. S. et al. A global map of human impact on marine ecosystems. Science 319, 948–952 (2008).

    CAS 
    Article 

    Google Scholar 

  • Ottersen, G., Hjermann, D. O. & Stenseth, N. C. Changes in spawning stock structure strengthen the link between climate and recruitment in a heavily fished cod (Gadus morhua) stock. Fish. Oceanogr. 15, 230–243 (2006).

    Article 

    Google Scholar 

  • Le Bris, A. et al. Climate vulnerability and resilience in the most valuable North American fishery. Proc. Natl Acad. Sci. USA 115, 1831–1836 (2018).

    Article 
    CAS 

    Google Scholar 

  • Henson, S. A. et al. Rapid emergence of climate change in environmental drivers of marine ecosystems. Nat. Commun. 8, 14682 (2017).

    Article 

    Google Scholar 

  • Bates, A. E. et al. Climate resilience in marine protected areas and the ‘Protection Paradox’. Biol. Conserv. 236, 305–314 (2019).

    Article 

    Google Scholar 

  • Xu, C., Kohler, T. A., Lenton, T. M., Svenning, J.-C. & Scheffer, M. Future of the human climate niche. Proc. Natl Acad. Sci. USA 117, 11350–11355 (2020).

    CAS 
    Article 

    Google Scholar 

  • Davies, T. E., Maxwell, S. M., Kaschner, K., Garilao, C. & Ban, N. C. Large marine protected areas represent biodiversity now and under climate change. Sci. Rep. 7, 9569 (2017).

    CAS 
    Article 

    Google Scholar 

  • MacKenzie, B. R. et al. A cascade of warming impacts brings bluefin tuna to Greenland waters. Glob. Change Biol. 20, 2484–2491 (2014).

    Article 

    Google Scholar 

  • Shackell, N. L., Ricard, D. & Stortini, C. Thermal habitat index of many Northwest Atlantic temperate species stays neutral under warming projected for 2030 but changes radically by 2060. PLoS ONE 9 (2014).

  • Boyce, D. G., Frank, K. T., Worm, B. & Leggett, W. C. Spatial patterns and predictors of trophic control across marine ecosystems. Ecol. Lett. 18, 1001–1011 (2015).

    Article 

    Google Scholar 

  • Boyce, D. G., Frank, K. T. & Leggett, W. C. From mice to elephants: overturning the ‘one size fits all’ paradigm in marine plankton food chains. Ecol. Lett. 18, 504–515 (2015).

    Article 

    Google Scholar 

  • Frank, K. T., Petrie, B., Shackell, N. L. & Choi, J. S. Reconciling differences in trophic control in mid-latitude marine ecosystems. Ecol. Lett. 9, 1096–1105 (2006).

    Article 

    Google Scholar 

  • Frank, K. T., Petrie, B. & Shackell, N. L. The ups and downs of trophic control in continental shelf ecosystems. Trends Ecol. Evol. 22, 236–242 (2007).

    Article 

    Google Scholar 

  • Loarie, S. R. et al. The velocity of climate change. Nature 462, 1052–1056 (2009).

    CAS 
    Article 

    Google Scholar 

  • Burrows, M. T. et al. The pace of shifting climate in marine and terrestrial ecosystems. Science 334, 652–655 (2011).

    CAS 
    Article 

    Google Scholar 

  • Mora, C. et al. The projected timing of climate departure from recent variability. Nature 502, 183–187 (2013).

    CAS 
    Article 

    Google Scholar 

  • Poloczanska, E. S. et al. Responses of marine organisms to climate change across oceans. Front. Mar. Sci. 3, 62 (2016).

    Article 

    Google Scholar 

  • Boyce, D. G., Lewis, M. L. & Worm, B. Global phytoplankton decline over the past century. Nature 466, 591–596 (2010).

    CAS 
    Article 

    Google Scholar 

  • Burek, K. A., Gulland, F. M. D. & O’Hara, T. M. Effects of climate change on Arctic marine mammal health. Ecol. Appl. 18, S126–S134 (2008).

    Article 

    Google Scholar 

  • Staude, I. R., Navarro, L. M. & Pereira, H. M. Range size predicts the risk of local extinction from habitat loss. Glob. Ecol. Biogeogr. 29, 16–25 (2020).

    Article 

    Google Scholar 

  • Moore, S. E. & Huntington, H. P. Arctic marine mammals and climate change: impacts and resilience. Ecol. Appl. 18, S157–S165 (2008).

    Article 

    Google Scholar 

  • Kaschner, K., Watson, R., Trites, A. & Pauly, D. Mapping world-wide distributions of marine mammal species using a relative environmental suitability (RES) model. Mar. Ecol. Prog. Ser. 316, 285–310 (2006).

    Article 

    Google Scholar 

  • Gonzalez-Suarez, M., Gomez, A. & Revilla, E. Which intrinsic traits predict vulnerability to extinction depends on the actual threatening processes. Ecosphere 4, 6 (2013).

    Article 

    Google Scholar 

  • Rogan, J. E. & Lacher, T. E. in Reference Module in Earth Systems and Environmental Sciences (Elsevier, 2018); https://doi.org/10.1016/B978-0-12-409548-9.10913-3

  • Warren, M. S. et al. Rapid responses of British butterflies to opposing forces of climate and habitat change. Nature 414, 65–69 (2001).

    CAS 
    Article 

    Google Scholar 

  • Chessman, B. C. Identifying species at risk from climate change: traits predict the drought vulnerability of freshwater fishes. Biol. Conserv. 160, 40–49 (2013).

    Article 

    Google Scholar 

  • Davidson, A. D. D. et al. Drivers and hotspots of extinction risk in marine mammals. Proc. Natl Acad. Sci. USA 109, 3395–3400 (2012).

    CAS 
    Article 

    Google Scholar 

  • Cheung, W. W. L., Pauly, D. & Sarmiento, J. L. How to make progress in projecting climate change impacts. ICES J. Mar. Sci. 70, 1069–1074 (2013).

    Article 

    Google Scholar 

  • Fenchel, T. Intrinsic rate of natural increase: the relationship with body size. Oecologia 14, 317–326 (1974).

    Article 

    Google Scholar 

  • Healy, K. et al. Ecology and mode-of-life explain lifespan variation in birds and mammals. Proc. R. Soc. B 281, 20140298 (2014).

    Article 

    Google Scholar 

  • Carilli, J., Donner, S. D. & Hartmann, A. C. Historical temperature variability affects coral response to heat stress. PLoS ONE 7, e34418 (2012).

    CAS 
    Article 

    Google Scholar 

  • Guest, J. R. et al. Contrasting patterns of coral bleaching susceptibility in 2010 suggest an adaptive response to thermal stress. PLoS ONE 7, e33353 (2012).

    CAS 
    Article 

    Google Scholar 

  • Donner, S. D. & Carilli, J. Resilience of Central Pacific reefs subject to frequent heat stress and human disturbance. Sci. Rep. 9, 3484 (2019).

    Article 
    CAS 

    Google Scholar 

  • Rehm, E. M., Olivas, P., Stroud, J. & Feeley, K. J. Losing your edge: climate change and the conservation value of range‐edge populations. Ecol. Evol. 5, 4315–4326 (2015).

    Article 

    Google Scholar 

  • Ready, J. et al. Predicting the distributions of marine organisms at the global scale. Ecol. Modell. 221, 467–478 (2010).

    Article 

    Google Scholar 

  • Jones, M. C., Dye, S. R., Pinnegar, J. K., Warren, R. & Cheung, W. W. L. Modelling commercial fish distributions: prediction and assessment using different approaches. Ecol. Modell. 225, 133–145 (2012).

    Article 

    Google Scholar 

  • Froese, R. & Pauly, D. FishBase v.02/2022 www.fishbase.org (2022).

  • Palomares, M. L. D. & Pauly, D. SeaLifeBase v.11/2014 www.sealifebase.org (2022).

  • van Buuren, S. Flexible Imputation of Missing Data (Chapman & Hall/CRC, 2012).

  • Dahlke, F. T., Wohlrab, S., Butzin, M. & Portner, H.-O. Thermal bottlenecks in the life cycle define climate vulnerability of fish. Science 369, 65–70 (2020).

    CAS 
    Article 

    Google Scholar 

  • Stortini, C. H., Shackell, N. L., Tyedmers, P. & Beazley, K. Assessing marine species vulnerability to projected warming on the Scotian Shelf, Canada. ICES J. Mar. Sci. 72, 1713–1743 (2015).

    Article 

    Google Scholar 

  • Reynolds, R. W. et al. Daily high-resolution-blended analyses for sea surface temperature. J. Clim. 20, 5473–5496 (2007).

    Article 

    Google Scholar 

  • Meinshausen, M. et al. The shared socio-economic pathway (SSP) greenhouse gas concentrations and their extensions to 2500. Geosci. Model Dev. 13, 3571–3605 (2020).

    CAS 
    Article 

    Google Scholar 

  • Samhouri, J. F. et al. Sea sick? Setting targets to assess ocean health and ecosystem services. Ecosphere 3, art41 (2012).

    Article 

    Google Scholar 

  • Rao, T. R. A curve for all reasons. Resonance 5, 85–90 (2000).

    Article 

    Google Scholar 

  • Mora, C. et al. Biotic and human vulnerability to projected changes in ocean biogeochemistry over the 21st century. PLoS Biol. 11, 10 (2013).

    Article 
    CAS 

    Google Scholar 

  • Lotze, H. K. et al. Ensemble projections of global ocean animal biomass with climate change. Proc. Natl Acad. Sci. USA https://doi.org/10.1073/pnas.1900194116 (2019).

  • Eyring, V. et al. Taking climate model evaluation to the next level. Nat. Clim. Change 9, 102–110 (2019).

    Article 

    Google Scholar 

  • Oppenheimer, M., Little, C. M. & Cooke, R. M. Expert judgement and uncertainty quantification for climate change. Nat. Clim. Change 6, 445–451 (2016).

    Article 

    Google Scholar 

  • Budescu, D. V., Por, H. H. & Broomell, S. B. Effective communication of uncertainty in the IPCC reports. Climatic Change 113, 181–200 (2012).

    Article 

    Google Scholar 

  • Swart, R., Bernstein, L., Ha-Duong, M. & Petersen, A. Agreeing to disagree: uncertainty management in assessing climate change, impacts and responses by the IPCC. Climatic Change 92, 1–29 (2009).

    Article 

    Google Scholar 

  • NAFO Annual Fisheries Statistics Database (NAFO, 2021).

  • Horton, T. et al. World Register of Marine Species (WoRMS) https://www.marinespecies.org (2020).

  • Total Wealth per Capita, 1995 to 2014 (World Bank, 2022); https://ourworldindata.org/grapher/total-wealth-per-capita

  • Depth of the Food Deficit in Kilocalories per Person per Day, 1992 to 2016 (World Bank, 2022); https://ourworldindata.org/grapher/depth-of-the-food-deficit

  • Boyce, D. G. et al. A climate risk index for marine life. Dryad https://doi.org/10.5061/dryad.7wm37pvwr (2022).

  • R Core Team R: A Language and Environment for Statistical Computing Version 4.0.4 (R Foundation for Statistical Computing, 2021).

  • Spatial point patterns generation on remote sensing data using convolutional neural networks with further statistical analysis

    Citizen science monitoring reveals links between honeybee health, pesticide exposure and seasonal availability of floral resources