in

A database of common vampire bat reports

[adace-ad id="91168"]
  • Geoffrey, E. Sur les Phyllostomes et les Megadermes, deux Genres de la famille des Chauve-souris. in Annales du Museum d’histoire (ed. Dufour, G.) vol. 15, 181 (d’Ocagne, 1810).

  • Wilson, D. E. & Mittermeier, R. A. Bats. in Handbook of the Mammals of the World. Vol. 9. (eds. Wilson, D. E. & Mittermeier, R. A.) 1008 (Springer International Publishing, 2019).

  • Hilaire, É. G. S., Pupuya, I. D. E., Del, R. & Higgins, L. B. O. Ampliación del rango de distribución sur de Desmodus rotundus. Boletín del Mus. Nac. Hist. Nat. 68, 5–12 (2019).

    Google Scholar 

  • Kwon, M. & Gardner, A. L. Subfamily Desmodontinae. in Mammals of South America, Volume 1: Marsupials, Xenarthrans, Shrews and Bats (ed. Gardner, A. L.) 218–223 (The University of Chicago Press, 2008).

  • Arellano-Sota, C. Vampire bat-transmitted rabies in cattle. Rev. Infect. Dis. 10, 707–709 (1988).

    Google Scholar 

  • Fernandes, M. E. B., Da Costa, L. J. C., De Andrade, F. A. G. & Silva, L. P. Rabies in humans and non-human in the state of Pará, Brazilian Amazon. Brazilian J. Infect. Dis. 17, 251–253 (2013).

    Google Scholar 

  • Andrade, F. A. G., Franca, E. S., Souza, V. P., Barreto, M. S. O. D. & Fernandes, M. E. B. Spatial and temporal analysis of attacks by common vampire bats (Desmodus rotundus) on humans in the rural Brazilian Amazon basin. Acta Chiropterologica 17, 393–400 (2015).

    Google Scholar 

  • Greenhall, A. M., Joermann, G. & Schmidt, U. Desmodus rotundus. Mamm. Species 202, 1–6 (1983).

    Google Scholar 

  • Herrera, L. G., Fleming, T. H. & Sternberg, L. S. Trophic relationships in a neotropical bat community: A preliminary study using carbon and nitrogen isotopic signatures. Trop. Ecol. 39, 23–29 (1998).

    Google Scholar 

  • Dantas Torres, F., Valença, C. & De Andrade Filho, G. V. First record of Desmodus rotundus in urban area from the city of Olinda, Pernambuco, Northeastern Brazil: A case report. Rev. Inst. Med. Trop. Sao Paulo 47, 107–108 (2005).

    PubMed 

    Google Scholar 

  • Flores-Crespo, R. & Arellano-Sota, C. Biology and control of the vampire bat. in The natural history of rabies (ed. Baer, G. M.) 461–476 (CRC Press Inc, 1991).

  • Flores-Crespo, R. & Arellano-Sota, C. Biology and control of the vampire bat. Nat. Hist. Rabies, 2nd Ed. 10, 461–476 (2017).

    Google Scholar 

  • Bolívar-Cimé, B., Flores-Peredo, R., García-Ortíz, S. A., Murrieta-Galindo, R. & Laborde, J. Influence of landscape structure on the abundance of Desmodus rotundus (Geoffroy 1810) in Northeastern Yucatan, Mexico. Ecosistemas y Recur. Agropecu. 6, 263 (2019).

    Google Scholar 

  • Koopman, K. F. Systematics and distribution. in Natural History of Vampire Bats (eds. Greenhall, A. M. & Schmidt, U.) 4–28 (CRC Press, 1988).

  • Dalquest, W. W. Natural history of the vampire bats of Eastern Mexico. Am. Midl. Nat. 53, 79–87 (1955).

    Google Scholar 

  • Kalko, E. K. V. & Handley, C. O. Neotropical bats in the canopy: Diversity, community structure, and implications for conservation. Plant Ecol. 153, 319–333 (2001).

    Google Scholar 

  • García-Morales, R., Badano, E. I. & Moreno, C. E. Response of neotropical bat assemblages to human land use. Conserv. Biol. 27, 1096–1106 (2013).

    PubMed 

    Google Scholar 

  • Barquez, R.M., Perez, S., Miller, B. & Diaz, M. M. Desmodus rotundus. The IUCN Red List of Threatened Species 2015 e.T6510A21979045, https://doi.org/10.2305/IUCN.UK.2015-4.RLTS.T6510A21979045.en (2015).

  • Becker, D. J. et al. Genetic diversity, infection prevalence, and possible transmission routes of Bartonella spp. in vampire bats. PLoS Negl. Trop. Dis. 12, e0006786 (2018).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Brandão, P. E. et al. A coronavirus detected in the vampire bat Desmodus rotundus. Brazilian J. Infect. Dis. 12, 466–468 (2008).

    Google Scholar 

  • Alves, R. S. et al. Detection of coronavirus in vampire bats (Desmodus rotundus) in southern Brazil. Transbound. Emerg. Dis. 00, 1–6 (2021).

    Google Scholar 

  • Rocha, F. & Dias, R. A. The common vampire bat Desmodus rotundus (Chiroptera: Phyllostomidae) and the transmission of the rabies virus to livestock: A contact network approach and recommendations for surveillance and control. Prev. Vet. Med. 174, e104809 (2020).

    Google Scholar 

  • Raoult, D. et al. Diagnosis of 22 new cases of Bartonella endocarditis. Ann. Intern. Med. 125, 646–652 (1996).

    CAS 
    PubMed 

    Google Scholar 

  • Raoult, D. et al. Outcome and treatment of Bartonella endocarditis. Arch. Int. Med. 163, 226–230 (2003).

    Google Scholar 

  • Neely, B. A. et al. Surveying the vampire bat (Desmodus rotundus) serum proteome: A resource for identifying immunological proteins and detecting pathogens. J. Proteome Res. 20, 2547–2559 (2021).

    CAS 
    PubMed 

    Google Scholar 

  • Rupprecht, C. E., Hanlon, C. A. & Hemachudha, T. Rabies re-examined. Lancet Infect. Dis. 2, 327–343 (2002).

    PubMed 

    Google Scholar 

  • World Health Organization. Rabies. WHO https://www.who.int/news-room/fact-sheets/detail/rabies (2020).

  • Lee, D. N., Papeş, M. & Van Den Bussche, R. A. Present and potential future distribution of common vampire bats in the Americas and the associated risk to cattle. PLoS One 7, e42466 (2012).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Acha, P. N. & Malaga-Alba, A. Economic losses due to Desmodus rotundus. in Natural History of Vampire Bats (eds. Greenhall, A. M. & Schmidt, U.) 207–214 (CRC Press, 1968).

  • Kotait, I. & Gonçalves, C. Manual Técnico MAPA – Controle da raiva dos herbívoros in Manual técnico dos herbívoros (Ministério da Agricultura, Pecuária e Abastecimento, 2009).

  • Johnson, N., Aréchiga-Ceballos, N. & Aguilar-Setien, A. Vampire bat rabies: Ecology, epidemiology and control. Viruses 6, 1911–1928 (2014).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Blackwood, J. C., Streicker, D. G., Altizer, S. & Rohani, P. Resolving the roles of immunity, pathogenesis, and immigration for rabies persistence in vampire bats. Proc. Natl. Acad. Sci. 110, 20837–20842 (2013).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Streicker, D. G. et al. Host-pathogen evolutionary signatures reveal dynamics and future invasions of vampire bat rabies. Proc. Natl. Acad. Sci. USA 113, 10926–10931 (2016).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Zarza, H., Martínez-Meyer, E., Suzán, G. & Ceballos, G. Geographic distribution of Desmodus rotundus in Mexico under current and future climate change scenarios: Implications for bovine paralytic rabies infection. Vet. Mex. 4, 3–16 (2017).

    Google Scholar 

  • Hayes, M. A. & Piaggio, A. J. Assessing the potential impacts of a changing climate on the distribution of a rabies virus vector. PLoS One 13, e0192887 (2018).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Nunez, G. B., Becker, D. J., Lawrence, R. L. & Plowright, R. K. Synergistic effects of grassland fragmentation and temperature on bovine rabies emergence. EcoHealth 17, 203–216 (2020).

    PubMed Central 

    Google Scholar 

  • da Rosa, E. S. T. et al. Bat-transmitted human rabies outbreaks, Brazilian Amazon. Emerg. Infect. Dis. 12, 1197–1202 (2006).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Rocha, S. M., de Oliveira, S. V., Heinemann, M. B. & Gonçalves, V. S. P. Epidemiological profile of wild rabies in Brazil (2002–2012). Transbound. Emerg. Dis. 64, 624–633 (2017).

    CAS 
    PubMed 

    Google Scholar 

  • Schneider, M. C. et al. Rabies transmitted by vampire bats to humans: An emerging zoonotic disease in Latin America? Pan Am. J. Public Health. 25, 260–269 (2009).

    Google Scholar 

  • VERA. Vigilancia epidemiológica de la rabia en las Américas. Organ. Panam. la Salud. 34, 14–42 (2020).

    Google Scholar 

  • World Health Organization. WHO expert consultation on rabies, second report. WHO Tech. Rep. Ser. 982, 1–139 (2013).

    Google Scholar 

  • Gilbert, A. T. et al. Evidence of rabies virus exposure among humans in the Peruvian Amazon. Am. J. Trop. Med. Hyg. 87, 206–215 (2012).

    Google Scholar 

  • Fahl, W. O. et al. Desmodus rotundus and Artibeus spp. bats might present distinct rabies virus lineages. Brazilian J. Infect. Dis. 16, 545–551 (2012).

    Google Scholar 

  • Berger, F. et al. Rabies risk: Difficulties encountered during management of grouped cases of bat bites in 2 isolated villages in French Guiana. PLoS Negl. Trop. Dis. 7, e2258 (2013).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Linhart, S. B., Flores Crespo, R. & Mitchell, G. C. Control de murciélagos vampiros por medio de un anticoagulante. Bull Pan Am Health Organ. 73, 100–109 (1972).

    CAS 

    Google Scholar 

  • Streicker, D. G. et al. Ecological and anthropogenic drivers of rabies exposure in vampire bats: Implications for transmission and control. Proc. R. Soc. B Biol. Sci. 279, 3384–3392 (2012).

    Google Scholar 

  • Henry, M., Cosson, J. F. & Pons, J. M. Modelling multi-scale spatial variation in species richness from abundance data in a complex neotropical bat assemblage. Ecol. Modell. 221, 2018–2027 (2010).

    Google Scholar 

  • Bárcenas-Reyes, I. et al. Comportamiento epidemiológico de la rabia paralítica bovina en la región central de México, 2001-2013. Pan Am. J. Public Health. 38, 396–402 (2015).

    Google Scholar 

  • Benavides, J. A., Valderrama, W. & Streicker, D. G. Spatial expansions and travelling waves of rabies in vampire bats. Proc. R. Soc. B 283, e20160328 (2016).

    Google Scholar 

  • Van de Vuurst, P. et al. Desmodus rotundus Occurrence Record Database. figshare https://doi.org/10.6084/m9.figshare.15025296.v6 (2021).

  • Wieczorek, J. et al. Darwin core: An evolving community-developed biodiversity data standard. PLoS One 7, e29715 (2012).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Robertson, T. et al. The GBIF integrated publishing toolkit: Facilitating the efficient publishing of biodiversity data on the internet. PLoS One 9, e102623 (2014).

    ADS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Marcial, L. H. & Hemminger, B. M. Scientific data repositories on the web: An initial survey. J. Am. Soc. Inf. Sci. Technol. 61, 2029–2048 (2010).

    Google Scholar 

  • GBIF.org. GBIF Occurrence Download. Global Biodiversity Information Facility. GBIF https://doi.org/10.15468/dl.my64ap (2020).

  • Grattarola, F. et al. Biodiversidata: An open-access biodiversity database for Uruguay. Biodivers. Data J. 7, e36226 (2019).

    PubMed 
    PubMed Central 

    Google Scholar 

  • CRIA. speciesLink Data Download. Centro de Referência em Informação Ambiental. https://specieslink.net/search/download/20210909104533-0016416 (2021).

  • Cambon, J. Package ‘ tidygeocoder’. CRAN 2–13 (2021).

  • Wickham, H., Francois, R., Henry, L. & Muller, K. Package ‘ dplyr’: A grammar of data manipulation. CRAN 3–88 (2020).

  • R Core Team. R: A language and environment for statisitical computing. https://www.R-project.org/ (2019).

  • Zizka, A. et al. Package ‘ CoordinateCleaner’. CRAN 13-152 (2019).

  • Wickham, H. ggplot2: Elegant graphics for data analysis. (Springer-Verlag, 2016).

  • ESRI Inc. ArcGIS Desktop Pro, version 2.4.3. https://www.esri.com/en-us/arcgis/products/arcgis-pro/overview (2019).


  • Source: Ecology - nature.com

    Conversations at the front line of climate

    3 Questions: The future of international education