in

A functional vulnerability framework for biodiversity conservation

  • Intergovernmental Panel on Climate Change (IPCC). Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change [Masson-Delmotte, V., et al. (2021).

  • Díaz, S. et al. Pervasive human-driven decline of life on Earth points to the need for transformative change. Science 366, eaax3100 (2019).

    PubMed 
    Article 
    CAS 

    Google Scholar 

  • Maire, E. et al. Micronutrient supply from global marine fisheries under climate change and overfishing. Curr. Biol. 31, 4132–4138.e3 (2021).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Vicedo-Cabrera, A. M. et al. The burden of heat-related mortality attributable to recent human-induced climate change. Nat. Clim. Change 11, 492–500 (2021).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • Hoegh-Guldberg, O. et al. The human imperative of stabilizing global climate change at 1.5 °C. Science 365, eaaw6974 (2019).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Turner, B. L. et al. A framework for vulnerability analysis in sustainability science. Proc. Natl Acad. Sci. USA 100, 8074–8079 (2003).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Jarić, I., Lennox, R. J., Kalinkat, G., Cvijanović, G. & Radinger, J. Susceptibility of European freshwater fish to climate change: Species profiling based on life‐history and environmental characteristics. Glob. Change Biol. 25, 448–458 (2018).

    ADS 
    Article 

    Google Scholar 

  • Comte, L. & Olden, J. D. Climatic vulnerability of the world’s freshwater and marine fishes. Nat. Clim. Change 7, 718–722 (2017).

    ADS 
    Article 

    Google Scholar 

  • Song, H. et al. Thresholds of temperature change for mass extinctions. Nat. Commun. 12, 4694 (2021).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Watson, A. J. Certainty and uncertainty in climate change predictions: what use are climate models? Environ. Resour. Econ. 39, 37–44 (2008).

    Article 

    Google Scholar 

  • Field, C. B. et al. Summary for policymakers. Climate change 2014: impacts, adaptation, and vulnerability. Part A: global and sectoral aspects. Contribution of Working Group II to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change, 1–32 (2014).

  • Shiogama, H. et al. Predicting future uncertainty constraints on global warming projections. Sci. Rep. 6, 18903 (2016).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Li, S. et al. The Pacific Decadal Oscillation is less predictable under greenhouse warming. Nat. Clim. Change 10, 30–34 (2020).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • Halpern, B. S., Selkoe, K. A., Micheli, F. & Kappel, C. V. Evaluating and ranking the vulnerability of global marine ecosystems to anthropogenic threats. Conserv. Biol. 21, 1301–1315 (2007).

    PubMed 
    Article 

    Google Scholar 

  • Mbaru, E. K., Graham, N. A. J., McClanahan, T. R. & Cinner, J. E. Functional traits illuminate the selective impacts of different fishing gears on coral reefs. J. Appl. Ecol. 57, 241–252 (2020).

    Article 

    Google Scholar 

  • Francalanci, S., Paris, E. & Solari, L. On the vulnerability of woody riparian vegetation during flood events. Environ. Fluid Mech. 20, 635–661 (2020).

    Article 

    Google Scholar 

  • Pellegrini, A. F. A. et al. Convergence of bark investment according to fire and climate structures ecosystem vulnerability to future change. Ecol. Lett. 20, 307–316 (2017).

    PubMed 
    Article 

    Google Scholar 

  • Jørgensen, L. L., Planque, B., Thangstad, T. H. & Certain, G. Vulnerability of megabenthic species to trawling in the Barents Sea. ICES J. Mar. Sci. 73, i84–i97 (2016).

    Article 

    Google Scholar 

  • Certain, G., Jørgensen, L. L., Christel, I., Planque, B. & Bretagnolle, V. Mapping the vulnerability of animal community to pressure in marine systems: disentangling pressure types and integrating their impact from the individual to the community level. ICES J. Mar. Sci. 72, 1470–1482 (2015).

    Article 

    Google Scholar 

  • Albouy, C. et al. Global vulnerability of marine mammals to global warming. Sci. Rep. 10, 548 (2020).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Staudt, A. et al. The added complications of climate change: understanding and managing biodiversity and ecosystems. Front. Ecol. Env. 11, 494–501 (2013).

    Article 

    Google Scholar 

  • Korpinen, S. & Andersen, J. H. A global review of cumulative pressure and impact assessments in marine environments. Front. Mar. Sci. 3, 153 (2016).

    Article 

    Google Scholar 

  • O’Neill, B. C. et al. Achievements and needs for the climate change scenario framework. Nat. Clim. Change 10, 1074–1084 (2020).

    ADS 
    Article 

    Google Scholar 

  • Stoddard, J. L., Larsen, D. P., Hawkins, C. P., Johnson, R. K. & Norris, R. H. Setting expectations for the ecological condition of streams: the concept of reference condition. Ecol. Appl. 16, 1267–1276 (2006).

    PubMed 
    Article 

    Google Scholar 

  • Soranno, P. A. et al. Quantifying regional reference conditions for freshwater ecosystem management: a comparison of approaches and future research needs. Lake Reserv. Manag. 27, 138–148 (2011).

    Article 

    Google Scholar 

  • Cinner, J. E. et al. Meeting fisheries, ecosystem function, and biodiversity goals in a human-dominated world. Science 368, 307–311 (2020).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 

  • D’agata, S. et al. Marine reserves lag behind wilderness in the conservation of key functional roles. Nat. Commun. 7, 12000 (2016).

    ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • Beyer, H. L., Venter, O., Grantham, H. S. & Watson, J. E. M. Substantial losses in ecoregion intactness highlight urgency of globally coordinated action. Cons. Lett. 13, 1–9 (2020).

    Article 

    Google Scholar 

  • Williams, B. A. et al. Global rarity of intact coastal regions. Cons. Biol. c13874, 1–12 (2022).

  • Kültz, D. Defining biological stress and stress responses based on principles of physics. J. Exp. Zool. A: Ecol. Integr. Physiol. 333, 350–358 (2020).

    Article 

    Google Scholar 

  • Tinker, J., Lowe, J., Pardaens, A., Holt, J. & Barciela, R. Uncertainty in climate projections for the 21st century northwest European shelf seas. Prog. Oceanogr. 148, 56–73 (2016).

    ADS 
    Article 

    Google Scholar 

  • Xu, L. et al. Potential precipitation predictability decreases under future warming. Geophys. Res Lett. 47, e2020GL090798 (2020).

    ADS 

    Google Scholar 

  • Cadotte, M. W. Functional traits explain ecosystem function through opposing mechanisms. Ecol. Lett. 20, 989–996 (2017).

    PubMed 
    Article 

    Google Scholar 

  • Bruelheide, H. et al. Global trait–environment relationships of plant communities. Nat. Ecol. Evol. 2, 1906–1917 (2018).

    PubMed 
    Article 

    Google Scholar 

  • Trindade-Santos, I., Moyes, F. & Magurran, A. E. Global change in the functional diversity of marine fisheries exploitation over the past 65 years. Proc. R. Soc. B. 287, 20200889 (2020).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • McLean, M. et al. Trait structure and redundancy determine sensitivity to disturbance in marine fish communities. Glob. Change Biol. 25, 3424–3437 (2019).

    ADS 
    Article 

    Google Scholar 

  • Walker, B. H. Biodiversity and ecological redundancy. Conserv. Biol. 6, 18–23 (1992).

    Article 

    Google Scholar 

  • McWilliam, M. et al. Biogeographical disparity in the functional diversity and redundancy of corals. Proc. Nat. Acad. Sci. USA 115, 3084–3089 (2018).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Murgier, J. et al. Rebound in functional distinctiveness following warming and reduced fishing in the North Sea. Proc. R. Soc. B. 288, 20201600 (2021).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Lavergne, S., Thuiller, W., Molina, J. & Debussche, M. Environmental and human factors influencing rare plant local occurrence, extinction and persistence: a 115-year study in the Mediterranean region: environmental factors influencing the distribution of rare plants. J. Biogeogr. 32, 799–811 (2005).

    Article 

    Google Scholar 

  • Stewart, P. S. et al. Global impacts of climate change on avian functional diversity. Ecol. Lett. 25, 673–685 (2022).

    PubMed 
    Article 

    Google Scholar 

  • Violle, C. et al. Functional rarity: the ecology of outliers. Trends Ecol. Evol. 32, 356–367 (2017).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Mouillot, D. et al. Functional over-redundancy and high functional vulnerability in global fish faunas on tropical reefs. Proc. Nat. Acad. Sci. USA 111, 13757–13762 (2014).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Waldock, C. et al. A quantitative review of abundance-based species distribution models. Ecography 2022, e05694 (2022).

    Article 

    Google Scholar 

  • Global Biodiversity Information Facility. available at: https://www.gbif.org/

  • Ocean Biodiversity Information System. available at: https://obis.org/

  • Edgar, G. J. & Stuart-Smith, R. D. Systematic global assessment of reef fish communities by the Reef Life Survey program. Sci. Data 1, 140007 (2014).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Edgar, G. J. et al. Reef life survey: establishing the ecological basis for conservation of shallow marine life. Biol. Conserv. 252, 108855 (2020).

    Article 

    Google Scholar 

  • Cinner, J. E. et al. Gravity of human impacts mediates coral reef conservation gains. Proc. Natl Acad. Sci. USA 115, E6116–E6125 (2018).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Kulbicki, M. et al. Global biogeography of reef fishes: a hierarchical quantitative delineation of regions. PLoS ONE 8, e81847 (2013).

    ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • United Nations Framework Convention on Climate Change. Paris Agreement. United Nations (2015).

  • Thorson, J. T., Munch, S. B., Cope, J. M. & Gao, J. Predicting life history parameters for all fishes worldwide. Ecol. Appl. 27, 2262–2276 (2017).

    PubMed 
    Article 

    Google Scholar 

  • Peterson, G. et al. Uncertainty, climate change, and adaptive management. Conserv. Ecol. 1, art4 (1997).

    Google Scholar 

  • Dewulf, A. & Biesbroek, R. Nine lives of uncertainty in decision-making: strategies for dealing with uncertainty in environmental governance. Policy Soc. 37, 441–458 (2018).

    Article 

    Google Scholar 

  • Parravicini, V. et al. Global mismatch between species richness and vulnerability of reef fish assemblages. Ecol. Lett. 17, 1101–1110 (2014).

    PubMed 
    Article 

    Google Scholar 

  • Bartomeus, I. & Godoy, O. Biotic controls of plant coexistence. J. Ecol. 106, 1767–1772 (2018).

    Article 

    Google Scholar 

  • Beissinger, S. R. & Riddell, E. A. Why are species’ traits weak predictors of range shifts? Annu. Rev. Ecol. Evol. Syst. 52, 47–66 (2021).

    Article 

    Google Scholar 

  • Halpern, B. S. et al. Spatial and temporal changes in cumulative human impacts on the world’s ocean. Nat. Commun. 6, 7615 (2015).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 

  • ICES (2021). Working Group for the Assessment of Demersal Stocks in the North Sea and Skagerrak (WGNSSK). ICES Scientific Reports. Report. https://doi.org/10.17895/ices.pub.8211.

  • Frid, C. L. J., Harwood, K. G., Hall, S. J. & Hall, J. A. Long-term changes in the benthic communities on North Sea fishing grounds. ICES J. Mar. Sci. 57, 1303–1309 (2000).

    Article 

    Google Scholar 

  • Montero‐Serra, I., Edwards, M. & Genner, M. J. Warming shelf seas drive the sub tropicalization of European pelagic fish communities. Glob. Change Biol. 21, 144–153 (2014).

    ADS 
    Article 

    Google Scholar 

  • Guillen, J. et al. A review of the European union landing obligation focusing on its implications for fisheries and the environment. Sustainability 10, 900 (2018).

    Article 

    Google Scholar 

  • Mouillot, D. et al. The dimensionality and structure of species trait spaces. Ecol. Lett. 24, 1988–2009 (2021).

    PubMed 
    Article 

    Google Scholar 

  • Valencia, E. et al. Synchrony matters more than species richness in plant community stability at a global scale. Proc. Nat. Acad. Sci. USA 117, 24345–24351 (2020).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Doak, D. F. et al. The statistical inevitability of stability-diversity relationships in community ecology. Am. Nat. 151, 264–276 (1998).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Halpern, B. S. et al. A global map of human impact on marine ecosystems. Science 319, 948–952 (2008).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Avila, I. C., Kaschner, K. & Dormann, C. F. Current global risks to marine mammals: taking stock of the threats. Biol. Cons. 221, 44–58 (2018).

    Article 

    Google Scholar 

  • Petchey, O. L. Functional diversity: back to basics and looking forward. Ecol Lett. 9, 741–758 (2006).

  • Lefcheck, J. S., Bastazini, V. A. G. & Griffin, J. N. Choosing and using multiple traits in functional diversity research. Environ. Conserv. 42, 104–107 (2015).

    Article 

    Google Scholar 

  • Zhu, L. et al. Trait choice profoundly affected the ecological conclusions drawn from functional diversity measures. Sci. Rep. 7, 3643 (2017).

    ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • Carmona, C. P., Guerrero, I., Morales, M. B., Oñate, J. J. & Peco, B. Assessing vulnerability of functional diversity to species loss: a case study in Mediterranean agricultural systems. Funct. Ecol. 31, 427–435 (2017).

    Article 

    Google Scholar 

  • Tobias, J. A. et al. AVONET: morphological, ecological and geographical data for all birds. Ecol. Lett. 25, 581–597 (2022).

    PubMed 
    Article 

    Google Scholar 

  • de Bello, F., Carmona, C. P., Leps, J., Szava-Kovats, R. & Pärtel, M. Functional diversity through the mean trait dissimilarity: resolving shortcomings with existing paradigms and algorithms. Oecologia 180, 933–940 (2016).

    ADS 
    PubMed 
    Article 

    Google Scholar 

  • Boyer, A. G. & Jetz, W. Extinctions and the loss of ecological function in island bird communities. Glob. Ecol. Biogeogr. 23, 679–688 (2014).

    Article 

    Google Scholar 

  • Stuart-Smith, R. D. et al. Integrating abundance and functional traits reveals new global hotspots of fish diversity. Nature 501, 539–542 (2013).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 

  • D’agata, S. et al. Human-mediated loss of phylogenetic and functional diversity in coral reef fishes. Curr. Biol. 24, 555–560 (2014).

    PubMed 
    Article 
    CAS 

    Google Scholar 

  • United Nations General Assembly. Transforming our world: The 2030 Agenda for Sustainable Development, 21 October 2015, A/RES/70/1. United Nations. https://www.refworld.org/docid/57b6e3e44.html (2015).

  • Grorud-Colvert, K. et al. The MPA Guide: a framework to achieve global goals for the ocean. Science 373, eabf0861 (2021).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Mouillot, D. et al. Rare species support vulnerable functions in high-diversity ecosystems. PLoS Biol. 11, e1001569 (2013).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Maire, E., Grenouillet, G., Brosse, S. & Villéger, S. How many dimensions are needed to accurately assess functional diversity? A pragmatic approach for assessing the quality of trait spaces: assessing trait space quality. Glob. Ecol. Biogeogr. 24, 728–740 (2015).

    Article 

    Google Scholar 

  • Villéger, S., Mason, N. W. & Mouillot, D. New multidimensional functional diversity indices for a multifaceted framework in functional ecology. Ecology 89, 2290–2301 (2008).

    PubMed 
    Article 

    Google Scholar 

  • Grenié, M., Denelle, P., Tucker, C. M., Munoz, F. & Violle, C. funrar: an R package to characterize functional rarity. Divers. Distrib. 23, 1365–1371 (2017).

    Article 

    Google Scholar 

  • Borcard, D., Gillet, F. & Legendre, P. Numerical Ecology with R (2011).

  • Villéger, S., Brosse, S., Mouchet, M., Mouillot, D. & Vanni, M. J. Functional ecology of fish: current approaches and future challenges. Aquat. Sci. 79, 783–801 (2017).

    Article 

    Google Scholar 

  • Beukhof, E., Dencker, T. S., Palomares, M. L. D. & Maureaud, A. A trait collection of marine fish species from North Atlantic and Northeast Pacific continental shelf seas. PANGAEA, https://doi.org/10.1594/PANGAEA.900866 (2019).

  • Liu, G. et al. Reef-scale thermal stress monitoring of coral ecosystems: new 5-km global products from NOAA coral reef watch. Remote Sens. 6, 11579–11606 (2014).

    ADS 
    Article 

    Google Scholar 

  • Phillips, S. J. et al. Sample selection bias and presence-only distribution models: implications for background and pseudo-absence data. Ecol. Appl. 19, 181–197 (2009).

    PubMed 
    Article 

    Google Scholar 

  • Righetti, D., Vogt, M., Gruber, N., Psomas, A. & Zimmermann, N. E. Global pattern of phytoplankton diversity driven by temperature and environmental variability. Sci. Adv. 5, 1–11 (2019).

    Article 

    Google Scholar 

  • Kwiatkowski, L. et al. Twenty-first century ocean warming, acidification, deoxygenation, and upper-ocean nutrient and primary production decline from CMIP6 model projections. Biogeosciences 17, 3439–3470 (2020).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • Oliver, E. C. J. et al. Projected marine heatwaves in the 21st century and the potential for ecological impact. Front. Mar. Sci. 6, 734 (2019).

    Article 

    Google Scholar 

  • Lenoir, J. et al. Species better track climate warming in the oceans than on land. Nat. Ecol. Evol. 4, 1044–1059 (2020).

    PubMed 
    Article 

    Google Scholar 

  • Stekhoven, D. J. & Bürhlmann, P. MissForest—non-parametric missing value imputation for mixed-type data. Bioinformatics 28, 112–118 (2012).

    CAS 
    PubMed 
    Article 

    Google Scholar 


  • Source: Ecology - nature.com

    A simple way to significantly increase lifetimes of fuel cells and other devices

    High energy and hungry for the hardest problems