Intergovernmental Panel on Climate Change (IPCC). Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change [Masson-Delmotte, V., et al. (2021).
Díaz, S. et al. Pervasive human-driven decline of life on Earth points to the need for transformative change. Science 366, eaax3100 (2019).
Google Scholar
Maire, E. et al. Micronutrient supply from global marine fisheries under climate change and overfishing. Curr. Biol. 31, 4132–4138.e3 (2021).
Google Scholar
Vicedo-Cabrera, A. M. et al. The burden of heat-related mortality attributable to recent human-induced climate change. Nat. Clim. Change 11, 492–500 (2021).
Google Scholar
Hoegh-Guldberg, O. et al. The human imperative of stabilizing global climate change at 1.5 °C. Science 365, eaaw6974 (2019).
Google Scholar
Turner, B. L. et al. A framework for vulnerability analysis in sustainability science. Proc. Natl Acad. Sci. USA 100, 8074–8079 (2003).
Google Scholar
Jarić, I., Lennox, R. J., Kalinkat, G., Cvijanović, G. & Radinger, J. Susceptibility of European freshwater fish to climate change: Species profiling based on life‐history and environmental characteristics. Glob. Change Biol. 25, 448–458 (2018).
Google Scholar
Comte, L. & Olden, J. D. Climatic vulnerability of the world’s freshwater and marine fishes. Nat. Clim. Change 7, 718–722 (2017).
Google Scholar
Song, H. et al. Thresholds of temperature change for mass extinctions. Nat. Commun. 12, 4694 (2021).
Google Scholar
Watson, A. J. Certainty and uncertainty in climate change predictions: what use are climate models? Environ. Resour. Econ. 39, 37–44 (2008).
Google Scholar
Field, C. B. et al. Summary for policymakers. Climate change 2014: impacts, adaptation, and vulnerability. Part A: global and sectoral aspects. Contribution of Working Group II to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change, 1–32 (2014).
Shiogama, H. et al. Predicting future uncertainty constraints on global warming projections. Sci. Rep. 6, 18903 (2016).
Google Scholar
Li, S. et al. The Pacific Decadal Oscillation is less predictable under greenhouse warming. Nat. Clim. Change 10, 30–34 (2020).
Google Scholar
Halpern, B. S., Selkoe, K. A., Micheli, F. & Kappel, C. V. Evaluating and ranking the vulnerability of global marine ecosystems to anthropogenic threats. Conserv. Biol. 21, 1301–1315 (2007).
Google Scholar
Mbaru, E. K., Graham, N. A. J., McClanahan, T. R. & Cinner, J. E. Functional traits illuminate the selective impacts of different fishing gears on coral reefs. J. Appl. Ecol. 57, 241–252 (2020).
Google Scholar
Francalanci, S., Paris, E. & Solari, L. On the vulnerability of woody riparian vegetation during flood events. Environ. Fluid Mech. 20, 635–661 (2020).
Google Scholar
Pellegrini, A. F. A. et al. Convergence of bark investment according to fire and climate structures ecosystem vulnerability to future change. Ecol. Lett. 20, 307–316 (2017).
Google Scholar
Jørgensen, L. L., Planque, B., Thangstad, T. H. & Certain, G. Vulnerability of megabenthic species to trawling in the Barents Sea. ICES J. Mar. Sci. 73, i84–i97 (2016).
Google Scholar
Certain, G., Jørgensen, L. L., Christel, I., Planque, B. & Bretagnolle, V. Mapping the vulnerability of animal community to pressure in marine systems: disentangling pressure types and integrating their impact from the individual to the community level. ICES J. Mar. Sci. 72, 1470–1482 (2015).
Google Scholar
Albouy, C. et al. Global vulnerability of marine mammals to global warming. Sci. Rep. 10, 548 (2020).
Google Scholar
Staudt, A. et al. The added complications of climate change: understanding and managing biodiversity and ecosystems. Front. Ecol. Env. 11, 494–501 (2013).
Google Scholar
Korpinen, S. & Andersen, J. H. A global review of cumulative pressure and impact assessments in marine environments. Front. Mar. Sci. 3, 153 (2016).
Google Scholar
O’Neill, B. C. et al. Achievements and needs for the climate change scenario framework. Nat. Clim. Change 10, 1074–1084 (2020).
Google Scholar
Stoddard, J. L., Larsen, D. P., Hawkins, C. P., Johnson, R. K. & Norris, R. H. Setting expectations for the ecological condition of streams: the concept of reference condition. Ecol. Appl. 16, 1267–1276 (2006).
Google Scholar
Soranno, P. A. et al. Quantifying regional reference conditions for freshwater ecosystem management: a comparison of approaches and future research needs. Lake Reserv. Manag. 27, 138–148 (2011).
Google Scholar
Cinner, J. E. et al. Meeting fisheries, ecosystem function, and biodiversity goals in a human-dominated world. Science 368, 307–311 (2020).
Google Scholar
D’agata, S. et al. Marine reserves lag behind wilderness in the conservation of key functional roles. Nat. Commun. 7, 12000 (2016).
Google Scholar
Beyer, H. L., Venter, O., Grantham, H. S. & Watson, J. E. M. Substantial losses in ecoregion intactness highlight urgency of globally coordinated action. Cons. Lett. 13, 1–9 (2020).
Google Scholar
Williams, B. A. et al. Global rarity of intact coastal regions. Cons. Biol. c13874, 1–12 (2022).
Kültz, D. Defining biological stress and stress responses based on principles of physics. J. Exp. Zool. A: Ecol. Integr. Physiol. 333, 350–358 (2020).
Google Scholar
Tinker, J., Lowe, J., Pardaens, A., Holt, J. & Barciela, R. Uncertainty in climate projections for the 21st century northwest European shelf seas. Prog. Oceanogr. 148, 56–73 (2016).
Google Scholar
Xu, L. et al. Potential precipitation predictability decreases under future warming. Geophys. Res Lett. 47, e2020GL090798 (2020).
Google Scholar
Cadotte, M. W. Functional traits explain ecosystem function through opposing mechanisms. Ecol. Lett. 20, 989–996 (2017).
Google Scholar
Bruelheide, H. et al. Global trait–environment relationships of plant communities. Nat. Ecol. Evol. 2, 1906–1917 (2018).
Google Scholar
Trindade-Santos, I., Moyes, F. & Magurran, A. E. Global change in the functional diversity of marine fisheries exploitation over the past 65 years. Proc. R. Soc. B. 287, 20200889 (2020).
Google Scholar
McLean, M. et al. Trait structure and redundancy determine sensitivity to disturbance in marine fish communities. Glob. Change Biol. 25, 3424–3437 (2019).
Google Scholar
Walker, B. H. Biodiversity and ecological redundancy. Conserv. Biol. 6, 18–23 (1992).
Google Scholar
McWilliam, M. et al. Biogeographical disparity in the functional diversity and redundancy of corals. Proc. Nat. Acad. Sci. USA 115, 3084–3089 (2018).
Google Scholar
Murgier, J. et al. Rebound in functional distinctiveness following warming and reduced fishing in the North Sea. Proc. R. Soc. B. 288, 20201600 (2021).
Google Scholar
Lavergne, S., Thuiller, W., Molina, J. & Debussche, M. Environmental and human factors influencing rare plant local occurrence, extinction and persistence: a 115-year study in the Mediterranean region: environmental factors influencing the distribution of rare plants. J. Biogeogr. 32, 799–811 (2005).
Google Scholar
Stewart, P. S. et al. Global impacts of climate change on avian functional diversity. Ecol. Lett. 25, 673–685 (2022).
Google Scholar
Violle, C. et al. Functional rarity: the ecology of outliers. Trends Ecol. Evol. 32, 356–367 (2017).
Google Scholar
Mouillot, D. et al. Functional over-redundancy and high functional vulnerability in global fish faunas on tropical reefs. Proc. Nat. Acad. Sci. USA 111, 13757–13762 (2014).
Google Scholar
Waldock, C. et al. A quantitative review of abundance-based species distribution models. Ecography 2022, e05694 (2022).
Google Scholar
Global Biodiversity Information Facility. available at: https://www.gbif.org/
Ocean Biodiversity Information System. available at: https://obis.org/
Edgar, G. J. & Stuart-Smith, R. D. Systematic global assessment of reef fish communities by the Reef Life Survey program. Sci. Data 1, 140007 (2014).
Google Scholar
Edgar, G. J. et al. Reef life survey: establishing the ecological basis for conservation of shallow marine life. Biol. Conserv. 252, 108855 (2020).
Google Scholar
Cinner, J. E. et al. Gravity of human impacts mediates coral reef conservation gains. Proc. Natl Acad. Sci. USA 115, E6116–E6125 (2018).
Google Scholar
Kulbicki, M. et al. Global biogeography of reef fishes: a hierarchical quantitative delineation of regions. PLoS ONE 8, e81847 (2013).
Google Scholar
United Nations Framework Convention on Climate Change. Paris Agreement. United Nations (2015).
Thorson, J. T., Munch, S. B., Cope, J. M. & Gao, J. Predicting life history parameters for all fishes worldwide. Ecol. Appl. 27, 2262–2276 (2017).
Google Scholar
Peterson, G. et al. Uncertainty, climate change, and adaptive management. Conserv. Ecol. 1, art4 (1997).
Dewulf, A. & Biesbroek, R. Nine lives of uncertainty in decision-making: strategies for dealing with uncertainty in environmental governance. Policy Soc. 37, 441–458 (2018).
Google Scholar
Parravicini, V. et al. Global mismatch between species richness and vulnerability of reef fish assemblages. Ecol. Lett. 17, 1101–1110 (2014).
Google Scholar
Bartomeus, I. & Godoy, O. Biotic controls of plant coexistence. J. Ecol. 106, 1767–1772 (2018).
Google Scholar
Beissinger, S. R. & Riddell, E. A. Why are species’ traits weak predictors of range shifts? Annu. Rev. Ecol. Evol. Syst. 52, 47–66 (2021).
Google Scholar
Halpern, B. S. et al. Spatial and temporal changes in cumulative human impacts on the world’s ocean. Nat. Commun. 6, 7615 (2015).
Google Scholar
ICES (2021). Working Group for the Assessment of Demersal Stocks in the North Sea and Skagerrak (WGNSSK). ICES Scientific Reports. Report. https://doi.org/10.17895/ices.pub.8211.
Frid, C. L. J., Harwood, K. G., Hall, S. J. & Hall, J. A. Long-term changes in the benthic communities on North Sea fishing grounds. ICES J. Mar. Sci. 57, 1303–1309 (2000).
Google Scholar
Montero‐Serra, I., Edwards, M. & Genner, M. J. Warming shelf seas drive the sub tropicalization of European pelagic fish communities. Glob. Change Biol. 21, 144–153 (2014).
Google Scholar
Guillen, J. et al. A review of the European union landing obligation focusing on its implications for fisheries and the environment. Sustainability 10, 900 (2018).
Google Scholar
Mouillot, D. et al. The dimensionality and structure of species trait spaces. Ecol. Lett. 24, 1988–2009 (2021).
Google Scholar
Valencia, E. et al. Synchrony matters more than species richness in plant community stability at a global scale. Proc. Nat. Acad. Sci. USA 117, 24345–24351 (2020).
Google Scholar
Doak, D. F. et al. The statistical inevitability of stability-diversity relationships in community ecology. Am. Nat. 151, 264–276 (1998).
Google Scholar
Halpern, B. S. et al. A global map of human impact on marine ecosystems. Science 319, 948–952 (2008).
Google Scholar
Avila, I. C., Kaschner, K. & Dormann, C. F. Current global risks to marine mammals: taking stock of the threats. Biol. Cons. 221, 44–58 (2018).
Google Scholar
Petchey, O. L. Functional diversity: back to basics and looking forward. Ecol Lett. 9, 741–758 (2006).
Lefcheck, J. S., Bastazini, V. A. G. & Griffin, J. N. Choosing and using multiple traits in functional diversity research. Environ. Conserv. 42, 104–107 (2015).
Google Scholar
Zhu, L. et al. Trait choice profoundly affected the ecological conclusions drawn from functional diversity measures. Sci. Rep. 7, 3643 (2017).
Google Scholar
Carmona, C. P., Guerrero, I., Morales, M. B., Oñate, J. J. & Peco, B. Assessing vulnerability of functional diversity to species loss: a case study in Mediterranean agricultural systems. Funct. Ecol. 31, 427–435 (2017).
Google Scholar
Tobias, J. A. et al. AVONET: morphological, ecological and geographical data for all birds. Ecol. Lett. 25, 581–597 (2022).
Google Scholar
de Bello, F., Carmona, C. P., Leps, J., Szava-Kovats, R. & Pärtel, M. Functional diversity through the mean trait dissimilarity: resolving shortcomings with existing paradigms and algorithms. Oecologia 180, 933–940 (2016).
Google Scholar
Boyer, A. G. & Jetz, W. Extinctions and the loss of ecological function in island bird communities. Glob. Ecol. Biogeogr. 23, 679–688 (2014).
Google Scholar
Stuart-Smith, R. D. et al. Integrating abundance and functional traits reveals new global hotspots of fish diversity. Nature 501, 539–542 (2013).
Google Scholar
D’agata, S. et al. Human-mediated loss of phylogenetic and functional diversity in coral reef fishes. Curr. Biol. 24, 555–560 (2014).
Google Scholar
United Nations General Assembly. Transforming our world: The 2030 Agenda for Sustainable Development, 21 October 2015, A/RES/70/1. United Nations. https://www.refworld.org/docid/57b6e3e44.html (2015).
Grorud-Colvert, K. et al. The MPA Guide: a framework to achieve global goals for the ocean. Science 373, eabf0861 (2021).
Google Scholar
Mouillot, D. et al. Rare species support vulnerable functions in high-diversity ecosystems. PLoS Biol. 11, e1001569 (2013).
Google Scholar
Maire, E., Grenouillet, G., Brosse, S. & Villéger, S. How many dimensions are needed to accurately assess functional diversity? A pragmatic approach for assessing the quality of trait spaces: assessing trait space quality. Glob. Ecol. Biogeogr. 24, 728–740 (2015).
Google Scholar
Villéger, S., Mason, N. W. & Mouillot, D. New multidimensional functional diversity indices for a multifaceted framework in functional ecology. Ecology 89, 2290–2301 (2008).
Google Scholar
Grenié, M., Denelle, P., Tucker, C. M., Munoz, F. & Violle, C. funrar: an R package to characterize functional rarity. Divers. Distrib. 23, 1365–1371 (2017).
Google Scholar
Borcard, D., Gillet, F. & Legendre, P. Numerical Ecology with R (2011).
Villéger, S., Brosse, S., Mouchet, M., Mouillot, D. & Vanni, M. J. Functional ecology of fish: current approaches and future challenges. Aquat. Sci. 79, 783–801 (2017).
Google Scholar
Beukhof, E., Dencker, T. S., Palomares, M. L. D. & Maureaud, A. A trait collection of marine fish species from North Atlantic and Northeast Pacific continental shelf seas. PANGAEA, https://doi.org/10.1594/PANGAEA.900866 (2019).
Liu, G. et al. Reef-scale thermal stress monitoring of coral ecosystems: new 5-km global products from NOAA coral reef watch. Remote Sens. 6, 11579–11606 (2014).
Google Scholar
Phillips, S. J. et al. Sample selection bias and presence-only distribution models: implications for background and pseudo-absence data. Ecol. Appl. 19, 181–197 (2009).
Google Scholar
Righetti, D., Vogt, M., Gruber, N., Psomas, A. & Zimmermann, N. E. Global pattern of phytoplankton diversity driven by temperature and environmental variability. Sci. Adv. 5, 1–11 (2019).
Google Scholar
Kwiatkowski, L. et al. Twenty-first century ocean warming, acidification, deoxygenation, and upper-ocean nutrient and primary production decline from CMIP6 model projections. Biogeosciences 17, 3439–3470 (2020).
Google Scholar
Oliver, E. C. J. et al. Projected marine heatwaves in the 21st century and the potential for ecological impact. Front. Mar. Sci. 6, 734 (2019).
Google Scholar
Lenoir, J. et al. Species better track climate warming in the oceans than on land. Nat. Ecol. Evol. 4, 1044–1059 (2020).
Google Scholar
Stekhoven, D. J. & Bürhlmann, P. MissForest—non-parametric missing value imputation for mixed-type data. Bioinformatics 28, 112–118 (2012).
Google Scholar
Source: Ecology - nature.com