in

A georeferenced rRNA amplicon database of aquatic microbiomes from South America

  • Cole, J., Findlay, S. & Pace, M. Bacterial production in fresh and saltwater ecosystems: a cross-system overview. Mar. Ecol. Prog. Ser. 43, 1–10 (1988).

    ADS 
    Article 

    Google Scholar 

  • Azam, F. et al. The Ecological Role of Water-Column Microbes in the Sea. Mar. Ecol. Prog. Ser. 10, 257–263 (1983).

    ADS 
    Article 

    Google Scholar 

  • Cotner, J. B. & Biddanda, B. A. Small players, large role: Microbial influence on biogeochemical processes in pelagic aquatic ecosystems. Ecosystems. 5, 105–121 (2002).

    CAS 
    Article 

    Google Scholar 

  • Falkowski, P. G., Fenchel, T. & Delong, E. F. The microbial engines that drive earth’s biogeochemical cycles. Science. 320, 1034–1039 (2008).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Newton, R. J., Jones, S. E., Eiler, A., McMahon, K. D. & Bertilsson, S. A Guide to the Natural History of Freshwater Lake Bacteria. Microbiol. Mol. Biol. Rev. 75, 14–49 (2011).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Coleman, M. L. et al. Genomic islands and the ecology and evolution of Prochlorococcus. Science. 311, 1768–1770 (2006).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Franzosa, E. A. et al. Sequencing and beyond: Integrating molecular ‘omics’ for microbial community profiling. Nat. Rev. Microbiol. 13, 360–372 (2015).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Hanson, C., Fuhrman, J., Horner-Devine, M. & Martiny, J. Beyond biogeographic patterns: processes shaping the microbial landscape. Nat. Rev. Microbiol. 10, 497–506 (2012).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Dai, A. & Trenberth, K. E. Estimates of freshwater discharge from continents: Latitudinal and seasonal variations. J. Hydrometeorol. 3, 660–687 (2002).

    ADS 
    <a data-track="click" rel="nofollow noopener" data-track-label="10.1175/1525-7541(2002)0032.0.CO;2″ data-track-action=”article reference” href=”https://doi.org/10.1175%2F1525-7541%282002%29003%3C0660%3AEOFDFC%3E2.0.CO%3B2″ aria-label=”Article reference 9″>Article 

    Google Scholar 

  • White, W. R. World water: resources, usage and the role of man-made reservoirs. Report No. FR/R0012. Fundation for Water Research, (2010).

  • Clark, E. A., Sheffield, J., van Vliet, M. T. H., Nijssen, B. & Lettenmaier, D. P. Continental runoff into the oceans (1950–2008). J. Hydrometeorol. 16, 1502–1520 (2015).

    ADS 
    Article 

    Google Scholar 

  • Stevaux, J. C., Paes, R. J., Franco, A. A., Mário, M. L. & Fujita, R. H. Morphodynamics in the confluence of large regulated rivers: The case of Paraná and Paranapanema Rivers. Lat. Am. J. Sedimentol. Basin Anal. 16, 101–109 (2009).

    Google Scholar 

  • Brêda, J. P. L. F. et al. Climate change impacts on South American water balance from a continental-scale hydrological model driven by CMIP5 projections. Clim. Change 159, 503–522 (2020).

    ADS 
    Article 

    Google Scholar 

  • Llames, M. E. & Zagarese, H. E. Lakes and Reservoirs of South America. In Encyclopedia of Inland Waters vol.2 (ed. Linkens, G. E.). (Oxford: Elsevier, 2009).

  • Cabrera, A. L. & Willink, A. Biogeografia De America Latina 2da edn (Organización de los Estados Americanos, 1980).

  • Morrone, J. J. Biogeografía de América Latina y el Caribe 1st edn. (Nature, 2001).

  • Morrone, J. J. Biogeographical regionalisation of the neotropical region. Zootaxa 3782, 1–110 (2014).

    PubMed 
    Article 

    Google Scholar 

  • Antonelli, A. et al. Amazonia is the primary source of Neotropical biodiversity. Proc. Natl. Acad. Sci. USA 115, 6034–6039 (2018).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Sarmento, H. New paradigms in tropical limnology: The importance of the microbial food web. Hydrobiologia 686, 1–14 (2012).

    Article 

    Google Scholar 

  • Meerhoff, M. et al. Environmental Warming in Shallow Lakes. A Review of Potential Changes in Community Structure as Evidenced from Space-for-Time Substitution Approaches. Adv. Ecol. Res. 46, 259–349 (2012).

    Article 

    Google Scholar 

  • Herlemann, D. P. R. et al. Transitions in bacterial communities along the 2000 km salinity gradient of the Baltic Sea. ISME J. 5, 1571–1579 (2011).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Metz, S. & Huber, P. et al. A georeferenced rRNA amplicon database of aquatic microbiomes from South America (Dataset), Zenodo, https://doi.org/10.5281/zenodo.6802178 (2022).

  • Callahan, B. J., Sankaran, K., Fukuyama, J. A., McMurdie, P. J. & Holmes, S. P. Bioconductor Workflow for Microbiome Data Analysis: from raw reads to community analyses. F1000 Research 5, 1492 (2016).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Martin, M. Cutadapt removes adapter sequences from high-throughput sequencing reads. EMBnet.journal 17, 10 (2011).

    Article 

    Google Scholar 

  • Edgar, R. C. UNOISE2: improved error-correction for Illumina 16S and ITS amplicon sequencing. Preprint at https://www.biorxiv.org/content/10.1101/081257v1 (2016).

  • Altschul, S. F., Gish, W., Miller, W., Myers, E. W. & Lipman, D. J. Basic local alignment search tool. J. Mol. Biol. 215, 403–410 (1990).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Quast, C. et al. The SILVA ribosomal RNA gene database project: Improved data processing and web-based tools. Nucleic Acids Res. 41, D590–D596 (2013).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Griffith, G. E., Omernik, J. M. & Azevedo, S. H. Ecological classification of the Western Hemisphere http://ecologicalregions.info/htm/ecoregions.htm (1998).

  • Salcedo, J. C. R. South America: Argentina, Bolivia, and Peru https://www.worldwildlife.org/ecoregions/nt1002 Accessed (2018).

  • Vidal, J. Geografía del Perú: las ocho regiones naturales, la regionalización transversal, la microregionalización 9th edn (PEISA, 1987).

  • Paruelo, J. M., Beltran, A., Jobbagy, E., Sala, O. E. & Golluscio, R. A. The climate of Patagonia: General patterns and controls on biotic processes. Ecol. Austral 8, 85–101 (1998).

    Google Scholar 

  • Iriondo, M. Quaternary lakes of Argentina. Palaeogeogr. Palaeoclimatol. Palaeoecol. 70, 81–88 (1989).

    Article 

    Google Scholar 

  • Soto, D. & Campos, H. in Ecología de los bosques templados de Chile vol. 1 (eds. Khalin, J. M. & Villagrán, C.) (Editorial Universitaria, 1995).

  • Modenutti, B. et al. Structure and dynamic of food webs in Andean North Patagonian freshwater systems: Organic matter, light and nutrient relationships. Ecol. Austral 20, 95–114 (2010).

    Google Scholar 

  • Modenutti, B. E. et al. Structure and dynamics of food webs in Andean lakes. Lakes Reserv. Res. Manag. 3, 179–186 (1998).

    Article 

    Google Scholar 

  • Quirós, R. & Drago, E. The environmental state of Argentinean lakes: An overview. Lakes Reserv. Res. Manag. 4, 55–64 (1999).

    Article 

    Google Scholar 

  • Morris, D. P. et al. The attenuation of solar UV radiation in lakes and the role of dissolved organic carbon. Limnol. Oceanogr. 40, 1381–1391 (1995).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • Bastidas Navarro, M., Balseiro, E. & Modenutti, B. Bacterial Community Structure in Patagonian Andean Lakes Above and Below Timberline: From Community Composition to Community Function. Microb. Ecol. 68, 528–541 (2014).

    PubMed 
    Article 

    Google Scholar 

  • Modenutti, B. et al. Environmental changes affecting light climate in oligotrophic mountain lakes: The deep chlorophyll maxima as a sensitive variable. Aquat. Sci. 75, 361–371 (2013).

    CAS 
    Article 

    Google Scholar 

  • Bastidas Navarro, M., Martyniuk, N., Balseiro, E. & Modenutti, B. Effect of glacial lake outburst floods on the light climate in an Andean Patagonian lake: implications for planktonic phototrophs. Hydrobiologia 816, 39–48 (2018).

    CAS 
    Article 

    Google Scholar 

  • Sioli, H. Hydrochemistry and Geology in the Brazilian Amazon Region. Amazoniana 1, 267–277 (1968).

    Google Scholar 

  • Fick, S. E. & Hijmans, R. J. WorldClim 2: new 1-km spatial resolution climate surfaces for global land areas. Int. J. Climatol. 37, 4302–4315 (2017).

    Article 

    Google Scholar 

  • Salati, E. & Vose, P. B. Amazon Basin: A system in equilibrium. Science. 225, 129–138 (1984).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Melack, J. M. & Forsberg, B. R. In The Biogeochemistry of the Amazon Basin Vol. 1 (eds. MacCLain, M. E., Victoria, R. & Richey, J. E.). (Oxford Scholarship Online, 2001).

  • Junk, W. J., Bayley, P. B. & Sparks, R. E. The flood pulse concept in river-floodplain systems. Can. J. Fish. Aquat. Sci. 106, 110–127 (1989).

    Google Scholar 

  • Ratter, J. A., Ribeiro, J. F. & Bridgewater, S. The Brazilian cerrado vegetation and threats to its biodiversity. Ann. Bot. 80, 223–230 (1997).

    Article 

    Google Scholar 

  • Haridasan, M. Nutritional adaptations of native plants of the cerrado biome in acid soils. Braz. J. Plant Physiol. 20, 183–195 (2008).

    Article 

    Google Scholar 

  • Vasconcelos, V., de Carvalho Júnior, O. A., de Souza Martins, É. & Couto Júnior, A. F. in World Geomorphological Landscapes. Vol. 1 (eds. Vieira, B., Salgado, A. & Santos, L.) (Springer, 2015).

  • Bichsel, D. et al. Water quality of rural ponds in the extensive agricultural landscape of the Cerrado (Brazil). Limnology 17, 239–246 (2016).

    CAS 
    Article 

    Google Scholar 

  • Cunha, D. G. F., Calijuri, M., do, C. & Lamparelli, M. C. A trophic state index for tropical/subtropical reservoirs (TSItsr). Ecol. Eng. 60, 126–134 (2013).

    Article 

    Google Scholar 

  • Morellato, L. P. C. & Haddad, C. F. B. Introduction: The Brazilian atlantic forest. Biotropica 32, 786–792 (2000).

    Article 

    Google Scholar 

  • Galindo-Leal, C. & Câmara, I. de G. The Atlantic Forest of South America: Biodiversity status, threats, and outlook 1st edn (Island Press, 2003).

  • Joly, C. A., Metzger, J. P. & Tabarelli, M. Experiences from the Brazilian Atlantic Forest: Ecological findings and conservation initiatives. New Phytologist 204, 459–473 (2014).

    PubMed 
    Article 

    Google Scholar 

  • Caliman, A. et al. Temporal coherence among tropical coastal lagoons: A search for patterns and mechanisms. Brazilian J. Biol. 70, 803–814 (2010).

    CAS 
    Article 

    Google Scholar 

  • Junger, P. C. et al. Salinity Drives the Virioplankton Abundance but Not Production in Tropical Coastal Lagoons. Microb. Ecol. 75, 52–63 (2018).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Depetris, P. J., Probst, J. L., Pasquini, A. I. & Gaiero, D. M. The geochemical characteristics of the Paraná River suspended sediment load: An initial assessment. Hydrol. Process. 17, 1267–1277 (2003).

    ADS 
    Article 

    Google Scholar 

  • Orfeo, O. & Stevaux, J. Hydraulic and morphological characteristics of middle and upper reaches of the Paraná River (Argentina and Brazil). Geomorphology 44, 309–322 (2002).

    ADS 
    Article 

    Google Scholar 

  • Neiff, J. J. Large rivers of South America: toward the new approach. Verh. Internat. Verein. Limnol 26, 167–180 (1996).

    Google Scholar 

  • Unrein, F. Changes in phytoplankton community along a transversal section of the Lower Paraná floodplain, Argentina. Hydrobiologia 468, 123–134 (2002).

    Article 

    Google Scholar 

  • Devercelli, M. Changes in phytoplankton morpho-functional groups induced by extreme hydroclimatic events in the Middle Paraná river (Argentina). Hydrobiologia 639, 5–19 (2010).

    CAS 
    Article 

    Google Scholar 

  • Huber, P. et al. Environmental heterogeneity determines the ecological processes that govern bacterial metacommunity assembly in a floodplain river system. ISME J. 14, 2951–2966 (2020).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Olson, D. M. et al. Terrestrial ecoregions of the world: A new map of life on Earth. Bioscience 51, 933–938 (2001).

    Article 

    Google Scholar 

  • Peel, M. C., Finlayson, B. L. & McMahon, T. A. Updated world map of the Köppen-Geiger climate classification. Hydrol. Earth Syst. Sci. 11, 1633–1644 (2007).

    ADS 
    Article 

    Google Scholar 

  • Conde, D., Arocena, R. & Recursos, R.-G. L. acuáticos superficiales de Uruguay: ambientes, algunas problemáticas y desafios para la gestión. Ambios 10, 1–7 (2003).

    Google Scholar 

  • Martin, L. & Suguio, K. Variation of coastal dynamics during the last 7000 years recorded in beach-ridge plains associated with river mouths: example from the central Brazilian coast. Palaeogeogr. Palaeoclimatol. Palaeoecol. 99, 119–140 (1992).

    Article 

    Google Scholar 

  • Alonso, C. et al. Environmental dynamics as a structuring factor for microbial carbon utilization in a subtropical coastal lagoon. Front. Microbiol. 4, 1664–302X (2013).

    Article 
    CAS 

    Google Scholar 

  • Amaral, V., Graeber, D., Calliari, D. & Alonso, C. Strong linkages between DOM optical properties and main clades of aquatic bacteria. Limnol. Oceanogr. 61, 906–918 (2016).

    ADS 
    Article 

    Google Scholar 

  • Rennella, A. M. M., Quiro, R. & Quirós, R. The effects of hydrology on plankton biomass in shallow lakes of the Pampa Plain. Hydrobiologia 556, 181–191 (2006).

    Article 

    Google Scholar 

  • Diaz, M., Pedrozo, F. & Baccala, N. Summer classification of Southern Hemisphere temperate lakes (Patagonia, Argentina). Lakes Reserv. Res. Manag. 5, 213–229 (2000).

    Article 

    Google Scholar 

  • Izaguirre, I. et al. Influence of fish introduction and water level decrease on lakes of the arid Patagonian plateaus with importance for biodiversity conservation. Glob. Ecol. Conserv. 14, e00391 (2018).

    Article 

    Google Scholar 

  • Porcel, S., Saad, J. F., Sabio y García, C. A. & Izaguirre, I. Microbial planktonic communities in lakes from a Patagonian basaltic plateau: influence of the water level decrease. Aquat. Sci. 81, 51 (2019).

    Article 
    CAS 

    Google Scholar 

  • Bernal, M. C. et al. Spatial variation of picoplankton communities along a cascade reservoir system in Patagonia, Argentina. J. Limnol. 80, 84–99 (2021).

    Google Scholar 

  • Leinonen, R. et al. The European nucleotide archive. Nucleic Acids Res. 39, 44–47 (2011).

    Article 
    CAS 

    Google Scholar 

  • ENA European Nucleotide Archive https://identifiers.org/ena.embl:PRJNA217932 (2013).

  • ENA European Nucleotide Archive https://identifiers.org/ena.embl:PRJNA302313 (2017).

  • ENA European Nucleotide Archive https://identifiers.org/ena.embl:PRJNA294718 (2022).

  • ENA European Nucleotide Archive https://identifiers.org/ena.embl:PRJNA309832 (2016).

  • ENA European Nucleotide Archive https://identifiers.org/ena.embl:PRJNA326475 (2016).

  • ENA European Nucleotide Archive https://identifiers.org/ena.embl:PRJEB48609 (2022).

  • ENA European Nucleotide Archive https://identifiers.org/ena.embl:PRJNA289691 (2015).

  • ENA European Nucleotide Archive https://identifiers.org/ena.embl:PRJNA414894 (2018).

  • ENA European Nucleotide Archive https://identifiers.org/ena.embl:PRJNA323673 (2016).

  • ENA European Nucleotide Archive https://identifiers.org/ena.embl:PRJNA356055 (2017).

  • ENA European Nucleotide Archive https://identifiers.org/ena.embl:PRJNA310230 (2017).

  • ENA European Nucleotide Archive https://identifiers.org/ena.embl:PRJNA390178 (2019).

  • ENA European Nucleotide Archive https://identifiers.org/ena.embl:PRJNA411849 (2017).

  • ENA European Nucleotide Archive https://identifiers.org/ena.embl:PRJNA725228 (2021).

  • ENA European Nucleotide Archive https://identifiers.org/ena.embl:PRJNA292014 (2015).

  • ENA European Nucleotide Archive https://identifiers.org/ena.embl:PRJNA310230 (2017).

  • ENA European Nucleotide Archive https://identifiers.org/ena.embl:PRJNA411849 (2017).

  • ENA European Nucleotide Archive https://identifiers.org/ena.embl:PRJNA316315 (2017).

  • ENA European Nucleotide Archive https://identifiers.org/ena.embl:PRJNA406945 (2017).

  • ENA European Nucleotide Archive https://identifiers.org/ena.embl:PRJNA515842 (2019).

  • ENA European Nucleotide Archive https://identifiers.org/ena.embl:PRJNA310230 (2017).

  • ENA European Nucleotide Archive https://identifiers.org/ena.embl:PRJNA321235 (2016).

  • ENA European Nucleotide Archive https://identifiers.org/ena.embl:SAMN07998328 (2015).

  • ENA European Nucleotide Archive https://identifiers.org/ena.embl:SAMN07998330 (2015).

  • ENA European Nucleotide Archive https://identifiers.org/ena.embl:PRJEB36116 (2020).

  • ENA European Nucleotide Archive https://identifiers.org/ena.embl:PRJEB29989 (2019).

  • ENA European Nucleotide Archive https://identifiers.org/ena.embl:PRJNA788397 (2021).

  • ENA European Nucleotide Archive https://identifiers.org/ena.embl:PRJEB48353 (2022).

  • ENA European Nucleotide Archive https://identifiers.org/ena.embl:PRJEB37379 (2020).

  • ENA European Nucleotide Archive https://identifiers.org/ena.embl:PRJEB46122 (2021).

  • ENA European Nucleotide Archive https://identifiers.org/ena.embl:PRJEB40710 (2020).

  • ENA European Nucleotide Archive https://identifiers.org/ena.embl:PRJEB40864 (2020).

  • ENA European Nucleotide Archive https://identifiers.org/ena.embl:PRJEB40854 (2020).

  • ENA European Nucleotide Archive https://identifiers.org/ena.embl:PRJNA268541 (2015).


  • Source: Ecology - nature.com

    MIT accelerates efforts on path to carbon reduction goals

    SMART Innovation Center awarded five-year NRF grant for new deep tech ventures