Cole, J., Findlay, S. & Pace, M. Bacterial production in fresh and saltwater ecosystems: a cross-system overview. Mar. Ecol. Prog. Ser. 43, 1–10 (1988).
Google Scholar
Azam, F. et al. The Ecological Role of Water-Column Microbes in the Sea. Mar. Ecol. Prog. Ser. 10, 257–263 (1983).
Google Scholar
Cotner, J. B. & Biddanda, B. A. Small players, large role: Microbial influence on biogeochemical processes in pelagic aquatic ecosystems. Ecosystems. 5, 105–121 (2002).
Google Scholar
Falkowski, P. G., Fenchel, T. & Delong, E. F. The microbial engines that drive earth’s biogeochemical cycles. Science. 320, 1034–1039 (2008).
Google Scholar
Newton, R. J., Jones, S. E., Eiler, A., McMahon, K. D. & Bertilsson, S. A Guide to the Natural History of Freshwater Lake Bacteria. Microbiol. Mol. Biol. Rev. 75, 14–49 (2011).
Google Scholar
Coleman, M. L. et al. Genomic islands and the ecology and evolution of Prochlorococcus. Science. 311, 1768–1770 (2006).
Google Scholar
Franzosa, E. A. et al. Sequencing and beyond: Integrating molecular ‘omics’ for microbial community profiling. Nat. Rev. Microbiol. 13, 360–372 (2015).
Google Scholar
Hanson, C., Fuhrman, J., Horner-Devine, M. & Martiny, J. Beyond biogeographic patterns: processes shaping the microbial landscape. Nat. Rev. Microbiol. 10, 497–506 (2012).
Google Scholar
Dai, A. & Trenberth, K. E. Estimates of freshwater discharge from continents: Latitudinal and seasonal variations. J. Hydrometeorol. 3, 660–687 (2002).
Google Scholar
White, W. R. World water: resources, usage and the role of man-made reservoirs. Report No. FR/R0012. Fundation for Water Research, (2010).
Clark, E. A., Sheffield, J., van Vliet, M. T. H., Nijssen, B. & Lettenmaier, D. P. Continental runoff into the oceans (1950–2008). J. Hydrometeorol. 16, 1502–1520 (2015).
Google Scholar
Stevaux, J. C., Paes, R. J., Franco, A. A., Mário, M. L. & Fujita, R. H. Morphodynamics in the confluence of large regulated rivers: The case of Paraná and Paranapanema Rivers. Lat. Am. J. Sedimentol. Basin Anal. 16, 101–109 (2009).
Brêda, J. P. L. F. et al. Climate change impacts on South American water balance from a continental-scale hydrological model driven by CMIP5 projections. Clim. Change 159, 503–522 (2020).
Google Scholar
Llames, M. E. & Zagarese, H. E. Lakes and Reservoirs of South America. In Encyclopedia of Inland Waters vol.2 (ed. Linkens, G. E.). (Oxford: Elsevier, 2009).
Cabrera, A. L. & Willink, A. Biogeografia De America Latina 2da edn (Organización de los Estados Americanos, 1980).
Morrone, J. J. Biogeografía de América Latina y el Caribe 1st edn. (Nature, 2001).
Morrone, J. J. Biogeographical regionalisation of the neotropical region. Zootaxa 3782, 1–110 (2014).
Google Scholar
Antonelli, A. et al. Amazonia is the primary source of Neotropical biodiversity. Proc. Natl. Acad. Sci. USA 115, 6034–6039 (2018).
Google Scholar
Sarmento, H. New paradigms in tropical limnology: The importance of the microbial food web. Hydrobiologia 686, 1–14 (2012).
Google Scholar
Meerhoff, M. et al. Environmental Warming in Shallow Lakes. A Review of Potential Changes in Community Structure as Evidenced from Space-for-Time Substitution Approaches. Adv. Ecol. Res. 46, 259–349 (2012).
Google Scholar
Herlemann, D. P. R. et al. Transitions in bacterial communities along the 2000 km salinity gradient of the Baltic Sea. ISME J. 5, 1571–1579 (2011).
Google Scholar
Metz, S. & Huber, P. et al. A georeferenced rRNA amplicon database of aquatic microbiomes from South America (Dataset), Zenodo, https://doi.org/10.5281/zenodo.6802178 (2022).
Callahan, B. J., Sankaran, K., Fukuyama, J. A., McMurdie, P. J. & Holmes, S. P. Bioconductor Workflow for Microbiome Data Analysis: from raw reads to community analyses. F1000 Research 5, 1492 (2016).
Google Scholar
Martin, M. Cutadapt removes adapter sequences from high-throughput sequencing reads. EMBnet.journal 17, 10 (2011).
Google Scholar
Edgar, R. C. UNOISE2: improved error-correction for Illumina 16S and ITS amplicon sequencing. Preprint at https://www.biorxiv.org/content/10.1101/081257v1 (2016).
Altschul, S. F., Gish, W., Miller, W., Myers, E. W. & Lipman, D. J. Basic local alignment search tool. J. Mol. Biol. 215, 403–410 (1990).
Google Scholar
Quast, C. et al. The SILVA ribosomal RNA gene database project: Improved data processing and web-based tools. Nucleic Acids Res. 41, D590–D596 (2013).
Google Scholar
Griffith, G. E., Omernik, J. M. & Azevedo, S. H. Ecological classification of the Western Hemisphere http://ecologicalregions.info/htm/ecoregions.htm (1998).
Salcedo, J. C. R. South America: Argentina, Bolivia, and Peru https://www.worldwildlife.org/ecoregions/nt1002 Accessed (2018).
Vidal, J. Geografía del Perú: las ocho regiones naturales, la regionalización transversal, la microregionalización 9th edn (PEISA, 1987).
Paruelo, J. M., Beltran, A., Jobbagy, E., Sala, O. E. & Golluscio, R. A. The climate of Patagonia: General patterns and controls on biotic processes. Ecol. Austral 8, 85–101 (1998).
Iriondo, M. Quaternary lakes of Argentina. Palaeogeogr. Palaeoclimatol. Palaeoecol. 70, 81–88 (1989).
Google Scholar
Soto, D. & Campos, H. in Ecología de los bosques templados de Chile vol. 1 (eds. Khalin, J. M. & Villagrán, C.) (Editorial Universitaria, 1995).
Modenutti, B. et al. Structure and dynamic of food webs in Andean North Patagonian freshwater systems: Organic matter, light and nutrient relationships. Ecol. Austral 20, 95–114 (2010).
Modenutti, B. E. et al. Structure and dynamics of food webs in Andean lakes. Lakes Reserv. Res. Manag. 3, 179–186 (1998).
Google Scholar
Quirós, R. & Drago, E. The environmental state of Argentinean lakes: An overview. Lakes Reserv. Res. Manag. 4, 55–64 (1999).
Google Scholar
Morris, D. P. et al. The attenuation of solar UV radiation in lakes and the role of dissolved organic carbon. Limnol. Oceanogr. 40, 1381–1391 (1995).
Google Scholar
Bastidas Navarro, M., Balseiro, E. & Modenutti, B. Bacterial Community Structure in Patagonian Andean Lakes Above and Below Timberline: From Community Composition to Community Function. Microb. Ecol. 68, 528–541 (2014).
Google Scholar
Modenutti, B. et al. Environmental changes affecting light climate in oligotrophic mountain lakes: The deep chlorophyll maxima as a sensitive variable. Aquat. Sci. 75, 361–371 (2013).
Google Scholar
Bastidas Navarro, M., Martyniuk, N., Balseiro, E. & Modenutti, B. Effect of glacial lake outburst floods on the light climate in an Andean Patagonian lake: implications for planktonic phototrophs. Hydrobiologia 816, 39–48 (2018).
Google Scholar
Sioli, H. Hydrochemistry and Geology in the Brazilian Amazon Region. Amazoniana 1, 267–277 (1968).
Fick, S. E. & Hijmans, R. J. WorldClim 2: new 1-km spatial resolution climate surfaces for global land areas. Int. J. Climatol. 37, 4302–4315 (2017).
Google Scholar
Salati, E. & Vose, P. B. Amazon Basin: A system in equilibrium. Science. 225, 129–138 (1984).
Google Scholar
Melack, J. M. & Forsberg, B. R. In The Biogeochemistry of the Amazon Basin Vol. 1 (eds. MacCLain, M. E., Victoria, R. & Richey, J. E.). (Oxford Scholarship Online, 2001).
Junk, W. J., Bayley, P. B. & Sparks, R. E. The flood pulse concept in river-floodplain systems. Can. J. Fish. Aquat. Sci. 106, 110–127 (1989).
Ratter, J. A., Ribeiro, J. F. & Bridgewater, S. The Brazilian cerrado vegetation and threats to its biodiversity. Ann. Bot. 80, 223–230 (1997).
Google Scholar
Haridasan, M. Nutritional adaptations of native plants of the cerrado biome in acid soils. Braz. J. Plant Physiol. 20, 183–195 (2008).
Google Scholar
Vasconcelos, V., de Carvalho Júnior, O. A., de Souza Martins, É. & Couto Júnior, A. F. in World Geomorphological Landscapes. Vol. 1 (eds. Vieira, B., Salgado, A. & Santos, L.) (Springer, 2015).
Bichsel, D. et al. Water quality of rural ponds in the extensive agricultural landscape of the Cerrado (Brazil). Limnology 17, 239–246 (2016).
Google Scholar
Cunha, D. G. F., Calijuri, M., do, C. & Lamparelli, M. C. A trophic state index for tropical/subtropical reservoirs (TSItsr). Ecol. Eng. 60, 126–134 (2013).
Google Scholar
Morellato, L. P. C. & Haddad, C. F. B. Introduction: The Brazilian atlantic forest. Biotropica 32, 786–792 (2000).
Google Scholar
Galindo-Leal, C. & Câmara, I. de G. The Atlantic Forest of South America: Biodiversity status, threats, and outlook 1st edn (Island Press, 2003).
Joly, C. A., Metzger, J. P. & Tabarelli, M. Experiences from the Brazilian Atlantic Forest: Ecological findings and conservation initiatives. New Phytologist 204, 459–473 (2014).
Google Scholar
Caliman, A. et al. Temporal coherence among tropical coastal lagoons: A search for patterns and mechanisms. Brazilian J. Biol. 70, 803–814 (2010).
Google Scholar
Junger, P. C. et al. Salinity Drives the Virioplankton Abundance but Not Production in Tropical Coastal Lagoons. Microb. Ecol. 75, 52–63 (2018).
Google Scholar
Depetris, P. J., Probst, J. L., Pasquini, A. I. & Gaiero, D. M. The geochemical characteristics of the Paraná River suspended sediment load: An initial assessment. Hydrol. Process. 17, 1267–1277 (2003).
Google Scholar
Orfeo, O. & Stevaux, J. Hydraulic and morphological characteristics of middle and upper reaches of the Paraná River (Argentina and Brazil). Geomorphology 44, 309–322 (2002).
Google Scholar
Neiff, J. J. Large rivers of South America: toward the new approach. Verh. Internat. Verein. Limnol 26, 167–180 (1996).
Unrein, F. Changes in phytoplankton community along a transversal section of the Lower Paraná floodplain, Argentina. Hydrobiologia 468, 123–134 (2002).
Google Scholar
Devercelli, M. Changes in phytoplankton morpho-functional groups induced by extreme hydroclimatic events in the Middle Paraná river (Argentina). Hydrobiologia 639, 5–19 (2010).
Google Scholar
Huber, P. et al. Environmental heterogeneity determines the ecological processes that govern bacterial metacommunity assembly in a floodplain river system. ISME J. 14, 2951–2966 (2020).
Google Scholar
Olson, D. M. et al. Terrestrial ecoregions of the world: A new map of life on Earth. Bioscience 51, 933–938 (2001).
Google Scholar
Peel, M. C., Finlayson, B. L. & McMahon, T. A. Updated world map of the Köppen-Geiger climate classification. Hydrol. Earth Syst. Sci. 11, 1633–1644 (2007).
Google Scholar
Conde, D., Arocena, R. & Recursos, R.-G. L. acuáticos superficiales de Uruguay: ambientes, algunas problemáticas y desafios para la gestión. Ambios 10, 1–7 (2003).
Martin, L. & Suguio, K. Variation of coastal dynamics during the last 7000 years recorded in beach-ridge plains associated with river mouths: example from the central Brazilian coast. Palaeogeogr. Palaeoclimatol. Palaeoecol. 99, 119–140 (1992).
Google Scholar
Alonso, C. et al. Environmental dynamics as a structuring factor for microbial carbon utilization in a subtropical coastal lagoon. Front. Microbiol. 4, 1664–302X (2013).
Google Scholar
Amaral, V., Graeber, D., Calliari, D. & Alonso, C. Strong linkages between DOM optical properties and main clades of aquatic bacteria. Limnol. Oceanogr. 61, 906–918 (2016).
Google Scholar
Rennella, A. M. M., Quiro, R. & Quirós, R. The effects of hydrology on plankton biomass in shallow lakes of the Pampa Plain. Hydrobiologia 556, 181–191 (2006).
Google Scholar
Diaz, M., Pedrozo, F. & Baccala, N. Summer classification of Southern Hemisphere temperate lakes (Patagonia, Argentina). Lakes Reserv. Res. Manag. 5, 213–229 (2000).
Google Scholar
Izaguirre, I. et al. Influence of fish introduction and water level decrease on lakes of the arid Patagonian plateaus with importance for biodiversity conservation. Glob. Ecol. Conserv. 14, e00391 (2018).
Google Scholar
Porcel, S., Saad, J. F., Sabio y García, C. A. & Izaguirre, I. Microbial planktonic communities in lakes from a Patagonian basaltic plateau: influence of the water level decrease. Aquat. Sci. 81, 51 (2019).
Google Scholar
Bernal, M. C. et al. Spatial variation of picoplankton communities along a cascade reservoir system in Patagonia, Argentina. J. Limnol. 80, 84–99 (2021).
Leinonen, R. et al. The European nucleotide archive. Nucleic Acids Res. 39, 44–47 (2011).
Google Scholar
ENA European Nucleotide Archive https://identifiers.org/ena.embl:PRJNA217932 (2013).
ENA European Nucleotide Archive https://identifiers.org/ena.embl:PRJNA302313 (2017).
ENA European Nucleotide Archive https://identifiers.org/ena.embl:PRJNA294718 (2022).
ENA European Nucleotide Archive https://identifiers.org/ena.embl:PRJNA309832 (2016).
ENA European Nucleotide Archive https://identifiers.org/ena.embl:PRJNA326475 (2016).
ENA European Nucleotide Archive https://identifiers.org/ena.embl:PRJEB48609 (2022).
ENA European Nucleotide Archive https://identifiers.org/ena.embl:PRJNA289691 (2015).
ENA European Nucleotide Archive https://identifiers.org/ena.embl:PRJNA414894 (2018).
ENA European Nucleotide Archive https://identifiers.org/ena.embl:PRJNA323673 (2016).
ENA European Nucleotide Archive https://identifiers.org/ena.embl:PRJNA356055 (2017).
ENA European Nucleotide Archive https://identifiers.org/ena.embl:PRJNA310230 (2017).
ENA European Nucleotide Archive https://identifiers.org/ena.embl:PRJNA390178 (2019).
ENA European Nucleotide Archive https://identifiers.org/ena.embl:PRJNA411849 (2017).
ENA European Nucleotide Archive https://identifiers.org/ena.embl:PRJNA725228 (2021).
ENA European Nucleotide Archive https://identifiers.org/ena.embl:PRJNA292014 (2015).
ENA European Nucleotide Archive https://identifiers.org/ena.embl:PRJNA310230 (2017).
ENA European Nucleotide Archive https://identifiers.org/ena.embl:PRJNA411849 (2017).
ENA European Nucleotide Archive https://identifiers.org/ena.embl:PRJNA316315 (2017).
ENA European Nucleotide Archive https://identifiers.org/ena.embl:PRJNA406945 (2017).
ENA European Nucleotide Archive https://identifiers.org/ena.embl:PRJNA515842 (2019).
ENA European Nucleotide Archive https://identifiers.org/ena.embl:PRJNA310230 (2017).
ENA European Nucleotide Archive https://identifiers.org/ena.embl:PRJNA321235 (2016).
ENA European Nucleotide Archive https://identifiers.org/ena.embl:SAMN07998328 (2015).
ENA European Nucleotide Archive https://identifiers.org/ena.embl:SAMN07998330 (2015).
ENA European Nucleotide Archive https://identifiers.org/ena.embl:PRJEB36116 (2020).
ENA European Nucleotide Archive https://identifiers.org/ena.embl:PRJEB29989 (2019).
ENA European Nucleotide Archive https://identifiers.org/ena.embl:PRJNA788397 (2021).
ENA European Nucleotide Archive https://identifiers.org/ena.embl:PRJEB48353 (2022).
ENA European Nucleotide Archive https://identifiers.org/ena.embl:PRJEB37379 (2020).
ENA European Nucleotide Archive https://identifiers.org/ena.embl:PRJEB46122 (2021).
ENA European Nucleotide Archive https://identifiers.org/ena.embl:PRJEB40710 (2020).
ENA European Nucleotide Archive https://identifiers.org/ena.embl:PRJEB40864 (2020).
ENA European Nucleotide Archive https://identifiers.org/ena.embl:PRJEB40854 (2020).
ENA European Nucleotide Archive https://identifiers.org/ena.embl:PRJNA268541 (2015).
Source: Ecology - nature.com