in

A global dataset of seaweed net primary productivity

  • Field, C. B., Behrenfeld, M. J., Randerson, J. T. & Falkowski, P. Primary production of the biosphere: Integrating terrestrial and oceanic components. Science. 281, 237–240 (1998).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Knapp, A. K. & Smith, M. D. Variation among biomes in temporal dynamics of aboveground primary production. Science. 291, 481–484 (2001).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Gillman, L. N. et al. Latitude, productivity and species richness. Glob. Ecol. Biogeogr. 24, 107–117 (2015).

    Article 

    Google Scholar 

  • Anav, A. et al. Spatiotemporal patterns of terrestrial gross primary production: A review. Rev. Geophys. 53, 1–34 (2015).

    Article 

    Google Scholar 

  • Goldman, C. R., Jassby, A. & Powell, T. Interannual fluctuations in primary production: Meteorological forcing at two subalpine lakes. Limnol. Oceanogr. 34, 310–323 (1989).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • Sayers, M. J., Fahnenstiel, G. L., Shuchman, R. A. & Bosse, K. R. A new method to estimate global freshwater phytoplankton carbon fixation using satellite remote sensing: initial results. Int. J. Remote Sens. 42, 3708–3730 (2021).

    Article 

    Google Scholar 

  • Behrenfeld, M. J. et al. Climate-driven trends in contemporary ocean productivity. Nature 444, 752–755 (2006).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Uitz, J., Claustre, H., Gentili, B. & Stramski, D. Phytoplankton class-specific primary production in the world’s oceans: Seasonal and interannual variability from satellite observations. Global Biogeochem. Cycles 24, GB3016 (2010).

    ADS 
    Article 
    CAS 

    Google Scholar 

  • Holt, J. et al. Modelling the global coastal ocean. Philos. Trans. R. Soc. A Math. Phys. Eng. Sci. 367, 939–951 (2009).

    ADS 
    MATH 
    Article 

    Google Scholar 

  • Duarte, C. M., Losada, I. J., Hendriks, I. E., Mazarrasa, I. & Marbà, N. The role of coastal plant communities for climate change mitigation and adaptation. Nat. Clim. Chang. 3, 961–968 (2013).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • Saba, V. S. et al. An evaluation of ocean color model estimates of marine primary productivity in coastal and pelagic regions across the globe. Biogeosciences 8, 489–503 (2011).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • Duarte, C. M. et al. Seagrass community metabolism: Assessing the carbon sink capacity of seagrass meadows. Global Biogeochem. Cycles 24, 1–8 (2010).

    Article 
    CAS 

    Google Scholar 

  • Charpy-Roubaud, C. & Sournia, A. The comparative estimation of phytoplanktonic, microphytobenthic and macrophytobenthic primary production in the oceans. Mar. Microb. Food Webs 4, 31–57 (1990).

    Google Scholar 

  • Duarte, C. M. et al. Global estimates of the extent and production of macroalgal forests. Global Ecology and Biogeography. 31(7), 1422–1439, https://doi.org/10.1111/geb.13515 (2022).

  • Duggins, D. O. & Estes, J. A. Magnification of secondary production by kelp detritus in coastal marine ecosystems. Science. 245, 170–173 (1989).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Dunton, K. H. & Schell, D. M. Dependence of consumers on macroalgal (Laminaria solidungula) carbon in an arctic kelp community: 13C evidence. Mar. Biol. 625, 615–625 (1987).

    Article 

    Google Scholar 

  • Krumhansl, K. A. & Scheibling, R. E. Production and fate of kelp detritus. Mar. Ecol. Prog. Ser. 467, 281–302 (2012).

    ADS 
    Article 

    Google Scholar 

  • Ortega, A. et al. Important contribution of macroalgae to oceanic carbon sequestration. Nat. Geosci. 12, 748–754 (2019).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • Krause-Jensen, D. & Duarte, C. M. Substantial role of macroalgae in marine carbon sequestration. Nat. Geosci. 9, 737–742 (2016).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • Bach, L. T. et al. Testing the climate intervention potential of ocean afforestation using the Great Atlantic Sargassum belt. Nat. Commun. 12, 2556 (2021).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Duarte, C. M., Wu, J., Xiao, X., Bruhn, A. & Krause-Jensen, D. Can Seaweed Farming Play a Role in Climate Change Mitigation and Adaptation? Front. Mar. Sci. 4 (2017).

  • Kanwisher, J. W. Photosynthesis and respiration in some seaweeds. in Some contemporary studies in marine science:: a collection of original scientific papers presented to Dr. S.M. Marshall, O.B.E., F.R.S. in recognition of her contribution with the late Dr. A.P. Orr to marine biological progress (eds. Barnes, H. & Marshall, S. M.) 407 (Allen & Unwin, 1966).

  • Blinks, L. R. Photosynthesis and productivity of littoral marine algae. J. Mar. Res. 14, 363–373 (1955).

    Google Scholar 

  • Printz, H. Seasonal growth and production of dry matter in Ascophyllum nodosum. Avh. Utg. Av Det Nor. Videnskaps-akademi i Oslo. I. Mat. Klasse 4, 1–15 (1950).

    Google Scholar 

  • Rassweiler, A., Reed, D. C., Harrer, S. L. & Nelson, J. C. Improved estimates of net primary production, growth and standing crop of Macrosystis pryifera in Southern California. Ecology 99, 2132 (2018).

    PubMed 
    Article 

    Google Scholar 

  • Littler, M. M. & Arnold, K. E. Primary Productivity of Marine Macroalgal Functional-Form Groups From Southwestern North America. Journal of Phycology 18, 307–311 (1982).

    Article 

    Google Scholar 

  • Krause-Jensen, D. et al. Seasonal sea ice cover as principal driver of spatial and temporal variation in depth extension and annual production of kelp in Greenland. Glob. Chang. Biol. 18, 2981–2994 (2012).

    ADS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Smale, D. A. et al. Environmental factors influencing primary productivity of the forest – forming kelp Laminaria hyperborea in the northeast Atlantic. Sci. Rep. 10, 12161 (2020).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Pessarrodona, A. et al. Global seaweed productivity. Science Advances https://doi.org/10.1126/sciadv.abn2465 (2022) (in press).

  • Assis, J. et al. Bio-ORACLE v2.0: Extending marine data layers for bioclimatic modelling. Glob. Ecol. Biogeogr. 27, 277–284 (2018).

    Article 

    Google Scholar 

  • Fulton, C. J. et al. Form and function of tropical macroalgal reefs in the Anthropocene. Funct. Ecol. 33, 989–999 (2019).

    Article 

    Google Scholar 

  • Tebbett, S. B. & Bellwood, D. R. Algal turf productivity on coral reefs: A meta-analysis. Mar. Environ. Res. 168, 105311 (2021).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Wernberg, T., Krumhansl, K., Filbee-Dexter, K. & Pedersen, M. F. Status and trends for the world’s kelp forests. in World Seas: An Environmental Evaluation: Ecological Issues and Environmental Impacts (ed. Sheppard, C.) 57–78, https://doi.org/10.1016/B978-0-12-805052-1.00003-6 (Academic Press, 2019).

  • Gómez, I. et al. Light and temperature demands of marine benthic microalgae and seaweeds in polar regions. Bot. Mar. 52, 593–608 (2009).

    Article 

    Google Scholar 

  • Kindig, A. C. & Littler, M. M. Growth and primary productivity of marine macrophytes exposed to domestic sewage effluents. Mar. Environ. Res. 3, 81–100 (1980).

    Article 

    Google Scholar 

  • Wanders, J. B. W. The role of benthic algae in the shallow reef of Curaçao (Netherlands Antilles) III: The significance of grazing. Aquat. Bot. 3, 357–390 (1977).

    Article 

    Google Scholar 

  • Hatcher, B. G. Reef primary productivity: a beggar’s banquet. Trends Ecol. Evol. 3, 106–111 (1988).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Odum, H. T. & Odum, E. P. Trophic Structure and Productivity of a Windward Coral Reef Community on Eniwetok Atoll. Ecol. Monogr. 25, 291–320 (1955).

    Article 

    Google Scholar 

  • Owen, D. P., Long, M. H., Fitt, W. K. & Hopkinson, B. M. Taxon-specific primary production rates on coral reefs in the Florida Keys. Limnol. Oceanogr. 1–14, https://doi.org/10.1002/lno.11627 (2020).

  • Attard, K. M. et al. Benthic oxygen exchange in a live coralline algal bed and an adjacent sandy habitat: An eddy covariance study. Mar. Ecol. Prog. Ser. 535, 99–115 (2015).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • Attard, K. M. Seasonal metabolism and carbon export potential of a key coastal habitat: The perennial canopy-forming macroalga Fucus vesiculosus. Limnol. Oceanogr. 64, 149–164 (2019).

    ADS 
    Article 

    Google Scholar 

  • Rohatgi, A. WebPlotDigitizer. (2019).

  • Brey, T., Müller-Wiegmann, C., Zittier, Z. M. C. & Hagen, W. Body composition in aquatic organisms – A global data bank of relationships between mass, elemental composition and energy content. J. Sea Res. 64, 334–340 (2010).

    ADS 
    Article 

    Google Scholar 

  • Thom, R. M. Spatial and Temporal Patterns of Fucus distichus ssp. edentatus (de la Pyl.) Pow. (Phaeophyceae: Fucales) in Central Puget Sound. Bot. Mar. 26, 471–486 (1983).

    Article 

    Google Scholar 

  • Johnston, C. S., Jones, R. G. & Hunter, D. R. A seasonal carbon budget for a laminarian population in a Scottish sea-loch. Helgoländer wissenschaftliche Meeresuntersuchungen 30, 527–545 (1977).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • Blain, C. O., Hansen, S. C. & Shears, N. T. Coastal darkening substantially limits the contribution of kelp to coastal carbon cycles. Glob. Chang. Biol. 1–17, https://doi.org/10.1111/gcb.15837 (2021).

  • Randall, J., Wotherspoon, S., Ross, J., Hermand, J. & Johnson, C. An in situ study of production from diel oxygen modelling, oxygen exchange, and electron transport rate in the kelp Ecklonia radiata. Mar. Ecol. Prog. Ser. 615, 51–65 (2019).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • Rodgers, K. L., Rees, T. A. V. & Shears, N. T. A novel system for measuring in situ rates of photosynthesis and respiration of kelp. Mar. Ecol. Prog. Ser. 528, 101–115 (2015).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • Sanderson, J. C. Subtidal Macroalgal Studies in East and South Eastern Tasmanian Coastal Waters. (University of Tasmania, 1990).

  • Miller, R. J., Reed, D. C. & Brzezinski, M. A. Community structure and productivity of subtidal turf and foliose algal assemblages. Mar. Ecol. Prog. Ser. 388, 1–11 (2009).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • Pessarrodona, A. et al. A global dataset of seaweed net primary productivity, Figshare, https://doi.org/10.6084/m9.figshare.14882322 (2021).

  • Berg, P., Huettel, M., Glud, R. N., Reimers, C. E. & Attard, K. M. Aquatic Eddy Covariance: The Method and Its Contributions to Defining Oxygen and Carbon Fluxes in Marine Environments. Ann. Rev. Mar. Sci. 14, 431–455 (2022).

    PubMed 
    Article 

    Google Scholar 

  • Lees, D. C., Houghton, J. P., Erickson, D. E., Driskell, W. B. & Boettcher, D. E. Ecological studies of intertidal and shallow subtidal habitats in lower Cook Inlet, Alaska. (1980).

  • Kelly, E. L. A. et al. A budget of algal production and consumption by herbivorous fish in an herbivore fisheries management area, Maui, Hawaii. Ecosphere 8, e01899 (2017).

    Article 

    Google Scholar 

  • Pedersen, M. F., Nejrup, L. B., Fredriksen, S., Christie, H. C. & Norderhaug, K. M. Effects of wave exposure on population structure, demography, biomass and productivity of the kelp Laminaria hyperborea. Mar. Ecol. Prog. Ser. 451, 45–60 (2012).

    ADS 
    Article 

    Google Scholar 

  • Kain, J. M. The biology of Laminaria hyperborea X. The effect of depth on some populations. J. Mar. Biol. Assoc. United Kingdom 57, 587–607 (1977).

    Article 

    Google Scholar 

  • Yatsuya, K., Nishigaki, T., Douke, A., Itani, M. & Wada, Y. Annual net productions of sargassacean species in coastal areas with different environmental characteristics in Kyoto Prefecture, the Sea of Japan. Nippon Suisan Gakkaishi 73, 880–890 (2007).

    Article 

    Google Scholar 

  • Carter, A. R. & Simons, R. H. Regrowth and Production Capacity of Gelidium pristoides (Gelidiales, Rhodophyta) under Various Harvesting Regimes at Port Alfred, South Africa. Bot. Mar. 30, 227–232 (1987).

    Article 

    Google Scholar 

  • Santelices, B., Vásquez, J., Ohme, U. & Fonck, E. Managing wild crops of Gracilaria in central Chile. in Eleventh International Seaweed Symposium (eds. Bird, C. J. & Ragan, M. A.) 77–89 (Springer Netherlands, 1984).

  • Pessarrodona, A., Foggo, A. & Smale, D. A. Can ecosystem functioning be maintained despite climate-driven shifts in species composition? Insights from novel marine forests. J. Ecol. 10, 91–104 (2018).

    Google Scholar 

  • Dunton, K. H. An annual carbon budget for an arctic kelp community. in The Alaskan Beaufort Sea: ecosystems and environments. (eds. Barnes, P. W., Schell, D. & Reimnitz, E.) 311–326 (Academic press, 1984).

  • Klumpp, D. W. & McKinnon, A. D. Commmunity structure, biomass and productivity of epilithic algal communities on the Great Barrier Reef; dynamics at different spatial scales. Mar. Ecol. Prog. Ser. 86, 77–89 (1992).

    ADS 
    Article 

    Google Scholar 

  • Westphalen, G. & Cheshire, A. C. Quantum efficiency and photosynthetic production of a temperate turf algal community. Aust. J. Bot. 45, 343–349 (1997).

    Article 

    Google Scholar 

  • Morrissey, J. Primary productivity of coral reef benthic macroalgae. Proceedings of the 5th International Coral Reef Congress 77–82 (1985).

  • Howard, K. L. & Menzies, R. J. Distribution and Production of Sargassum in the Waters off the Carolina Coast. Bot. Mar. 12, 244–254 (1969).

    Article 

    Google Scholar 

  • Weigel, B. L. & Pfister, C. A. The dynamics and stoichiometry of dissolved organic carbon release by kelp. Ecology 102, 1–17 (2020).

    Google Scholar 

  • Tait, L. W., South, P. M., Lilley, S. A., Thomsen, M. S. & Schiel, D. R. Assemblage and understory carbon production of native and invasive canopy-forming macroalgae. J. Exp. Mar. Bio. Ecol. 469, 10–17 (2015).

    CAS 
    Article 

    Google Scholar 

  • Rodgers, K. & Shears, N. Modelling kelp forest primary production using in situ photosynthesis, biomass and light measurements. Mar. Ecol. Prog. Ser. 553, 67–79 (2016).

    ADS 
    CAS 
    Article 

    Google Scholar 


  • Source: Ecology - nature.com

    Making hydropower plants more sustainable

    Nitrogen cycling and microbial cooperation in the terrestrial subsurface