in

A global, historical database of tuna, billfish, and saury larval distributions

  • FAO. The State of World Fisheries and Aquaculture 2020., https://doi.org/10.4060/ca9229en (FAO, 2020).

  • Watson, J. W. & Kerstetter, D. W. Pelagic Longline Fishing Gear: A Brief History and Review of Research Efforts to Improve Selectivity. Mar. Technol. Soc. J. 40, 6–11 (2006).

    Article 

    Google Scholar 

  • Hare, S. R. et al. The western an our d central Pacific tuna fishery: 2019 overview and status of stocks. (SPC, 2020).

  • Wang, S.-P. Stock assessment of blue marlin in the Indian Ocean using Stock Synthesis. (IOTC, 2019).

  • Ohshimo, S. et al. Horizontal distribution and habitat of Pacific bluefin tuna, Thunnus orientalis, larvae in the waters around Japan. Bull. Mar. Sci. 93, 769–787 (2017).

    ADS 
    Article 

    Google Scholar 

  • Margulies, D., Scholey, V. P., Wexler, J. B. & Stein, M. S. Chapter 5 – Research on the Reproductive Biology and Early Life History of Yellowfin Tuna Thunnus albacares in Panama. In Advances in Tuna Aquaculture: From Hatchery to Market (eds. Benetti, D. D., Partridge, G. J. & Buentello, A.) 77–114, https://doi.org/10.1016/B978-0-12-411459-3.00004-7 (Academic Press, 2016).

  • Madigan, D. J. et al. Intrinsic tracers reveal recent foraging ecology of giant Pacific bluefin tuna at their primary spawning grounds. Mar. Ecol. Prog. Ser. 553, 253–266 (2016).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • Ward, T. M., Staunton-Smith, J., Hoyle, S. & Halliday, I. A. Spawning patterns of four species of predominantly temperate pelagic fishes in the sub-tropical waters of southern Queensland. Estuar. Coast. Shelf Sci. 56, 1125–1140 (2003).

    ADS 
    Article 

    Google Scholar 

  • Kiyofuji, H. & Ochi, D. Proposal of alternative spatial structure for skipjack stock assessment in the WCPO. (WCPFC, 2016).

  • Reglero, P., Tittensor, D., Álvarez-Berastegui, D., Aparicio-González, A. & Worm, B. Worldwide distributions of tuna larvae: revisiting hypotheses on environmental requirements for spawning habitats. Mar. Ecol. Prog. Ser. 501, 207–224 (2014).

    ADS 
    Article 

    Google Scholar 

  • Schilling, H. T. et al. Multiple spawning events promote increased larval dispersal of a predatory fish in a western boundary current. Fish. Oceanogr. 29, 309–323 (2020).

    Article 

    Google Scholar 

  • Richardson, D. E., Hare, J. A., Overholtz, W. J. & Johnson, D. L. Development of long-term larval indices for Atlantic herring (Clupea harengus) on the northeast US continental shelf. ICES J. Mar. Sci. 67, 617–627 (2010).

    Article 

    Google Scholar 

  • Muhling, B. A. et al. Overlap between Atlantic bluefin tuna spawning grounds and observed Deepwater Horizon surface oil in the northern Gulf of Mexico. Mar. Pollut. Bull. 64, 679–687 (2012).

    CAS 
    Article 

    Google Scholar 

  • Brown, S. K., Buja, K. R., Jury, S. H., Monaco, M. E. & Banner, A. Habitat Suitability Index Models for Eight Fish and Invertebrate Species in Casco and Sheepscot Bays, Maine. North Am. J. Fish. Manag. 20, 408–435 (2000).

    Article 

    Google Scholar 

  • Hernández, C. M. et al. Evidence and patterns of tuna spawning inside a large no-take Marine Protected Area. Sci. Rep. 9, 1–11 (2019).

    Article 

    Google Scholar 

  • Janßen, H. et al. Integration of fisheries into marine spatial planning: Quo vadis? Estuar. Coast. Shelf Sci. 201, 105–113 (2018).

    ADS 
    Article 

    Google Scholar 

  • Richardson, A. J. et al. Residency and reproductive status of yellowfin tuna in a proposed large-scale pelagic marine protected area. Aquat. Conserv. Mar. Freshw. Ecosyst. 28, 1308–1316 (2018).

    Article 

    Google Scholar 

  • CBD. Protected areas and other effective area-based conservation measures (Decision 14/8). https://www.cbd.int/doc/decisions/cop-14/cop-14-dec-08-en.pdf (2018).

  • Gurney, G. G. et al. Biodiversity needs every tool in the box: use OECMs. Nature 595, 646–649 (2021).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • Hiltz, E., Fuller, S. & Mitchell, J. Disko Fan Conservation Area: a Canadian case study. Parks 24, 17–30 (2018).

    Article 

    Google Scholar 

  • IUCN-WCPA Task Force on OECMs. Recognising and reporting other effective area-based conservation measures. https://portals.iucn.org/library/sites/library/files/documents/PATRS-003-En.pdf (2019).

  • Berkeley, S. A., Hixon, M. A., Larson, R. J. & Love, M. S. Fisheries Sustainability via Protection of Age Structure and Spatial Distribution of Fish Populations. Fisheries 29, 23–32 (2004).

    Article 

    Google Scholar 

  • Hall, S. In A Fishery manager’s guidebook – Second Edition (eds. Garcia, S. M. & Cochrane, K. L.) 196–219 Ch.8 – Area and time restrictions. (Wiley-Blackwell, 2009).

  • Jonas, H. D., Barbuto, V., Jonas, H. C., Kothari, A. & Nelson, F. New steps of change: looking beyond protected areas to consider other effective area-based conservation measures. Parks 20, 111–128 (2014).

    Article 

    Google Scholar 

  • Dunn, D. C., Maxwell, S. M., Boustany, A. M. & Halpin, P. N. Dynamic ocean management increases the efficiency and efficacy of fisheries management. Proc. Natl. Acad. Sci. 113, 668–673 (2016).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • Le Quesne, W. J. F. & Codling, E. A. Managing mobile species with MPAs: the effects of mobility, larval dispersal, and fishing mortality on closure size. ICES J. Mar. Sci. 66, 122–131 (2009).

    Article 

    Google Scholar 

  • Richardson, D. E. et al. Discovery of a spawning ground reveals diverse migration strategies in Atlantic bluefin tuna (Thunnus thynnus). Proc. Natl. Acad. Sci. 113, 3299–3304 (2016).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • Dueri, S., Bopp, L. & Maury, O. Projecting the impacts of climate change on skipjack tuna abundance and spatial distribution. Glob. Change Biol. 20, 742–753 (2014).

    ADS 
    Article 

    Google Scholar 

  • Asch, R. G. Climate change and decadal shifts in the phenology of larval fishes in the California Current ecosystem. Proc. Natl. Acad. Sci. 112, E4065–E4074 (2015).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • Mountain, D. G. & Murawski, S. A. Variation in the distribution of fish stocks on the northeast continental shelf in relation to their environment, 1980–1989. ICES mar. Sci. Symp. 195, 424–432.

  • Muhling, B. A. et al. Potential impact of climate change on the Intra-Americas Sea: Part 2. Implications for Atlantic bluefin tuna and skipjack tuna adult and larval habitats. J. Mar. Syst. 148, 1–13 (2015).

    Article 

    Google Scholar 

  • Asch, R. G., Stock, C. A. & Sarmiento, J. L. Climate change impacts on mismatches between phytoplankton blooms and fish spawning phenology. Glob. Change Biol. 25, 2544–2559 (2019).

    ADS 
    Article 

    Google Scholar 

  • Pankhurst, N. W. & Munday, P. L. Effects of climate change on fish reproduction and early life history stages. Mar. Freshw. Res. 62, 1015–1026 (2011).

    CAS 
    Article 

    Google Scholar 

  • Lehodey, P., Senina, I., Nicol, S. & Hampton, J. Modelling the impact of climate change on South Pacific albacore tuna. Deep Sea Res. Part II Top. Stud. Oceanogr. 113, 246–259 (2015).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • Muhling, B. A. et al. Collection of Larval Bluefin Tuna (Thunnus Thynnus) Outside Documented Western Atlantic Spawning Grounds. Bull. Mar. Sci. 87, 687–694 (2011).

    Article 

    Google Scholar 

  • Nishikawa, Y., Honma, M., Ueyanagi, S. & Kikawa, S. Average Distribution of Larvae of Oceanic Species of Scombroid Fishes, 1956–1981. (Far Seas Fisheries Research Laboratory, 1985).

  • Maunder, M. N. & Punt, A. E. Standardizing catch and effort data: a review of recent approaches. Fish. Res. 70, 141–159 (2004).

    Article 

    Google Scholar 

  • Collette, B. B. In Annotated Checklist of Fishes Vol. 19 Family Scombridae Rafinesque 1815 – mackerels, tunas, and bonitos. (California Academy of Sciences, 2003).

  • Fricke, R., Eschmeyer, W. N. & Van der Laan, R. Eschmeyer’s catalog of fishes; Genera, species, references. Electronic version. (California Academy of Sciences, 2022).

  • R Core Team. R: A language and environment for statistical computing. (R Foundation for Statistical Computing, 2022).

  • Buenafe, KCV. tinbuenafe/DigitizingNishikawa: Digitizing Nishikawa v3.0, Zenodo, https://doi.org/10.5281/zenodo.6592148 (2022).

  • Hijmans, R. J. et al. terra: Spatial Data Analysis. (2022).

  • Pebesma, E. Simple Features for R: Standardized Support for Spatial Vector Data. R J. 10, 439–446 (2018).

    Article 

    Google Scholar 

  • Blondel, E. & Billet, N. RFigisGeo: A R package to handle utilities for geospatial processing. (2022).

  • FAO. FAO Major Fishing Areas. https://www.fao.org/fishery/en/area/search (2022).

  • Richards, W. J. & Potthoff, T. Analysis of the Taxonomic Characters of Young Scombrid Fishes, Genus Thunnus. In The Early life history of Fish (ed. Blaxter, J. H. S.) 623–648, https://doi.org/10.1007/978-3-642-65852-5_50 (Springer, 1974).

  • Luthy, S. A., Cowen, R. K., Serafy, J. E. & McDowell, J. R. Toward identification of larval sailfish (Istiophorus platypterus), white marlin (Tetrapturus albidus), and blue marlin (Makaira nigricans) in the western North Atlantic Ocean. Fish. Bull. 103 (2004).


  • Source: Ecology - nature.com

    Four researchers with MIT ties earn Schmidt Science Fellowships

    Fusion’s newest ambassador