Díaz, S. et al. Set ambitious goals for biodiversity and sustainability. Science 370, 411–413 (2020).
Google Scholar
Sutherland, W. J. & Woodroof, H. J. The need for environmental horizon scanning. Trends Ecol. Evol. 24, 523–527 (2009).
Google Scholar
Sutherland, W. J. et al. Ten years on: a review of the first global conservation horizon scan. Trends Ecol. Evol. 34, 139–153 (2019).
Google Scholar
Sutherland, W. J. et al. A horizon scan of global conservation issues for 2010. Trends Ecol. Evol. 25, 1–7 (2010).
Google Scholar
Sutherland, W. J. et al. A horizon scan of global conservation issues for 2016. Trends Ecol. Evol. 31, 44–53 (2016).
Google Scholar
Sutherland, W. J. et al. A horizon scanning assessment of current and potential future threats facing migratory shorebirds. Ibis 154, 663–679 (2012).
Google Scholar
Bowman, D. M. J. S. et al. Vegetation fires in the Anthropocene. Nat. Rev. Earth Environ. 1, 500–515 (2020).
Google Scholar
Tang, W. et al. Widespread phytoplankton blooms triggered by 2019–2020 Australian wildfires. Nature 597, 370–375 (2021).
Google Scholar
Silva, L. G. M. et al. Mortality events resulting from Australia’s catastrophic fires threaten aquatic biota. Glob. Change Biol. 26, 5345–5350 (2020).
Google Scholar
Abram, N. J., Gagan, M. K., McCulloch, M. T., Chappell, J. & Hantoro, W. S. Coral reef death during the 1997 Indian Ocean Dipole linked to Indonesian wildfires. Science 301, 952–955 (2003).
Google Scholar
Solomon, C. T. et al. Ecosystem consequences of changing inputs of terrestrial dissolved organic matter to lakes: current knowledge and future challenges. Ecosystems 18, 376–389 (2015).
Google Scholar
Sully, S. & van Woesik, R. Turbid reefs moderate coral bleaching under climate related temperature stress. Glob. Change Biol. 26, 1367–1373 (2021).
Google Scholar
Blain, C. O., Hansen, S. C. & Shears, N. T. Coastal darkening substantially limits the contribution of kelp to coastal carbon cycles. Glob. Change Biol. 27, 5547–5563 (2021).
Google Scholar
Stewart, B. D. et al. Metal pollution as a potential threat to shell strength and survival in marine bivalves. Sci. Total Environ. 755, 143019 (2021).
Google Scholar
Roberts, D. A. et al. Ocean acidification increases the toxicity of contaminated sediments. Glob. Change Biol. 19, 340–351 (2013).
Google Scholar
Hauton, C. et al. Identifying toxic impact of metals potentially released during deep-sea mining—a synthesis of the challenges to quantifying risk. Front. Mar. Sci. 4, 368 (2017).
Chaudhary, C. et al. Global warming is causing a more pronounced dip in marine species richness around the equator. Proc. Natl Acad. Sci. USA 118, e2015094118 (2021).
Google Scholar
Burrows, M. T. et al. Geographical limits to species-range shifts are suggested by climate velocity. Nature 507, 492–495 (2014).
Google Scholar
Yasuhara, M. et al. Past and future decline of tropical pelagic biodiversity. Proc. Natl Acad. Sci. USA 117, 12891–12896 (2020).
Google Scholar
Pandolfi, J. M. et al. Are U.S. coral reefs on the slippery slope to slime? Science 307, 1725–1726 (2005).
Google Scholar
Hixson, S. M. & Arts, M. T. Climate warming is predicted to reduce omega-3, long-chain, polyunsaturated fatty acid production in phytoplankton. Glob. Change Biol. 22, 2744–2755 (2016).
Google Scholar
Hicks, C. C. et al. Harnessing global fisheries to tackle micronutrient deficiencies. Nature 574, 95–98 (2019).
Google Scholar
Colombo, S. M. et al. Projected declines in global DHA availability for human consumption as a result of global warming. Ambio 49, 865–880 (2020).
Google Scholar
Lam, V. W. et al. Climate change, tropical fisheries and prospects for sustainable development. Nat. Rev. Earth Environ. 1, 440–454 (2020).
Google Scholar
Antacli, J. C. et al. Increase in unsaturated fatty acids in Antarctic phytoplankton under ocean warming and glacial melting scenarios. Sci. Total Environ. 790, 147879 (2021).
Google Scholar
Maire, E. et al. Micronutrient supply from global marine fisheries under climate change and overfishing. Curr. Biol. 18, 4132–4138 (2021).
Google Scholar
Lim, Y. S., Ok, Y. J., Hwang, S. Y., Kwak, J. Y. & Yoon, S. Marine collagen as a promising biomaterial for biomedical applications. Mar. Drugs 17, 467 (2019).
Google Scholar
Xu, N. et al. Marine-derived collagen as biomaterials for human health. Front. Nutr. 8, 702108 (2021).
Google Scholar
Vieira, H., Leal, M. C. & Calado, R. Fifty shades of blue: how blue biotechnology is shaping the bioeconomy. Trends Biotechnol. 38, 940–943 (2020).
Google Scholar
Ben-Hasan, A. et al. China’s fish maw demand and its implications for fisheries in source countries. Mar. Policy 132, 104696 (2021).
Google Scholar
Sadovy de Mitcheson, Y., To, A. W. L., Wong, N. W., Kwan, H. Y. & Bud, W. S. Emerging from the murk: threats, challenges and opportunities for the global swim bladder trade. Rev. Fish. Biol. Fish. 29, 809–835 (2019).
Google Scholar
Brownell, R. L. Jr et al. Bycatch in gillnet fisheries threatens critically endangered small cetaceans and other aquatic megafauna. Endang. Species Res. 40, 285–296 (2019).
Google Scholar
Webb, T. J., Vanden Berghe, E. & O’Dor, R. K. Biodiversity’s big wet secret: the global distribution of marine biological records reveals chronic under-exploration of the deep pelagic ocean. PLoS ONE 5, e10223 (2010).
Google Scholar
St. John, M. A. et al. A dark hole in our understanding of marine ecosystems and their services: perspectives from the mesopelagic community. Front. Mar. Sci. 3, 31 (2016).
Thomsen, L. et al. The oceanic biological pump: rapid carbon transfer to depth at continental margins during winter. Sci. Rep. 7, 10763 (2017).
Google Scholar
Roberts, C. M., Hawkins, J. P., Hindle, K., Wilson, R. W. & O’Leary, B. C. Entering the Twilight Zone: The Ecological Role and Importance of Mesopelagic Fishes (Blue Marine Foundation, 2020)
Cavan, E. L., Laurenceau-Cornec, E. C., Bressac, M. & Boyd, P. W. Exploring the ecology of the mesopelagic biological pump. Prog. Oceanogr. 176, 102125 (2019).
Google Scholar
Levin, L. A. et al. Climate change considerations are fundamental to management of deep‐sea resource extraction. Glob. Change Biol. 26, 4664–4678 (2020).
Google Scholar
Li, Z. et al. Continuous electrical pumping membrane process for seawater lithium mining. Energy Environ. Sci. 14, 3152–3159 (2021).
Google Scholar
Jin, M., Gai, Y., Guo, X., Hou, Y. & Zeng, R. Properties and applications of extremozymes from deep-sea extremophilic microorganisms: a mini review. Mar. Drugs 17, 656 (2019).
Google Scholar
Mbow, C. et al. in IPCC Special Report on Climate Change and Land (eds Shukla, P.R. et al.) 437–550 (IPCC, 2019).
Christie, N., Smyth, K., Barnes, R. & Elliott, M. Co-location of activities and designations: a means of solving or creating problems in marine spatial planning? Mar. Pol. 43, 254–261 (2014).
Google Scholar
Mayer-Pinto, M., Dafforn, K. A. & Johnston, E. L. A decision framework for coastal infrastructure to optimize biotic resistance and resilience in a changing climate. BioScience 69, 833–843 (2019).
Google Scholar
Wang, C. M. & Wang, B. T. in ICSCEA 2019 (eds Reddy, J. N. et al.) 3–29 (Springer, 2020).
Ross, C. T. F. & McCullough, R. R. Conceptual design of a floating island city. J. Ocean Technol. 5, 120–121 (2010).
Dong, Y.-w, Huang, X.-w, Wang, W., Li, Y. & Wang, J. The marine ‘great wall’ of China: local- and broad-scale ecological impacts of coastal infrastructure on intertidal macrobenthic communities. Divers. Distrib. 22, 731–744 (2016).
Google Scholar
Flikkema, M. M. B., Lin, F.-Y., van der Plank, P. P. J., Koning, J. & Waals, O. Legal issues for artificial floating islands. Front. Mar. Sci. 8, 619462 (2021).
Google Scholar
Richir, J., Bray, S., McAleese, T. & Watson, G. J. Three decades of trace element sediment contamination: the mining of governmental databases and the need to address hidden sources for clean and healthy seas. Environ. Int. 149, 106362 (2021).
Google Scholar
Zhao, Y. et al. A review on battery market trends, second-life reuse, and recycling. Sustain. Chem. 2, 167–205 (2021).
Google Scholar
Li, W., Lee, S. & Manthiram, A. High‐Nickel NMA: a cobalt‐free alternative to NMC and NCA cathodes for lithium‐ion batteries. Adv. Mater. 32, 2002718 (2020).
Google Scholar
Ghaffarivardavagh, R., Afzal, S. S., Rodriguez, O. & Adib, F. in SIGCOMM ’20 Proc. 19th ACM Workshop on Hot Topics in Networks 125–131 (Association for Computing Machinery, 2020).
Hazen, E. L. et al. Ontogeny in marine tagging and tracking science: technologies and data gaps. Mar. Ecol. Prog. Ser. 457, 221–240 (2012).
Google Scholar
Davies, T. E. et al. Tracking data and the conservation of the high seas: opportunities and challenges. J. Appl. Ecol. 58, 2703–2710 (2021).
Aracri, S. et al. Soft robots for ocean exploration and offshore operations: a perspective. Soft Robot. https://doi.org/10.1089/soro.2020.0011 (2021).
Li, G. et al. Self-powered soft robot in the Mariana Trench. Nature 591, 66–71 (2021).
Google Scholar
Philamore, H., Ieropoulos, I., Stinchcombe, A. & Rossiter, J. Toward energetically autonomous foraging soft robots. Soft Robot. 3, 186–197 (2016).
Google Scholar
Manfra, L. et al. Biodegradable polymers: a real opportunity to solve marine plastic pollution? J. Hazard. Mater. 416, 125763 (2021).
Google Scholar
Kim, D., Kim, H. & An, Y. J. Effects of synthetic and natural microfibers on Daphnia magna: are they dependent on microfiber type? Aquat. Toxicol. 240, 105968 (2021).
Google Scholar
Degli-Innocenti, F., Bellia, G., Tosin, M., Kapanen, A. & Itävaara, M. Detection of toxicity released by biodegradable plastics after composting in activated vermiculite. Polym. Degrad. Stab. 73, 101–106 (2001).
Google Scholar
Macreadie, P. I. et al. The future of blue carbon science. Nat. Commun. 10, 3998 (2019).
Short, R. E. et al. Harnessing the diversity of small-scale actors is key to the future of aquatic food systems. Nat. Food 2, 733–741 (2021).
Google Scholar
Watson, J. E. M. et al. Set a global target for ecosystems. Nature 578, 360–362 (2020).
Google Scholar
Obura, D. O. et al. Integrate biodiversity targets from local to global levels. Science 373, 746 (2021).
Google Scholar
Barnes, M. D., Glew, L., Wyborn, C. & Craigie, I. D. Prevent perverse outcomes from global protected area policy. Nat. Ecol. Evol. 2, 759–762 (2018).
Google Scholar
Grorud-Colvert, K. et al. The MPA Guide: a framework to achieve global goals for the ocean. Science 373, eabf0861 (2021).
Google Scholar
Jefferson, R. L., McKinley, E., Griffin, H., Nimmo, A. & Fletcher, S. Public perceptions of the ocean: lessons for marine conservation from a global research review. Front. Mar. Sci. 8, 711245 (2021).
Potts, T., Pita, C., O’Higgins, T. & Mee, L. Who cares? European attitudes towards marine and coastal environments. Mar. Pol. 72, 59–66 (2016).
Google Scholar
Bennett, N. J. et al. Towards a sustainable and equitable blue economy. Nat. Sustain. 2, 991–993 (2019).
Google Scholar
Jouffray, J.-B., Blasiak, R., Norström, A. V., Österblom, H. & Nyström, M. The blue acceleration: the trajectory of human expansion into the ocean. One Earth 2, 43–54 (2020).
Google Scholar
Zheng, Y. & Walsham, G. Inequality of what? An intersectional approach to digital inequality under Covid-19. Inf. Organ. 31, 100341 (2021).
Google Scholar
Blythe, J. L., Armitage, D., Bennett, N. J., Silver, J. J. & Song, A. M. The politics of ocean governance transformations. Front. Mar. Sci. 8, 634718 (2021).
Google Scholar
Brennan, C., Ashley, M. & Molloy, O. A system dynamics approach to increasing ocean literacy. Front. Mar. Sci. 6, 360 (2019).
Google Scholar
Stoll-Kleemann, S. Feasible options for behavior change toward more effective ocean literacy: a systematic review. Front. Mar. Sci. 6, 273 (2019).
Google Scholar
Bennett, N. J. et al. Advancing social equity in and through marine conservation. Front. Mar. Sci. 8, 711538 (2021).
Google Scholar
Short, R. E. et al. Review of the evidence for oceans and human health relationships in Europe: a systematic map. Environ. Int. 146, 106275 (2021).
Google Scholar
Mukherjee, N. et al. The Delphi technique in ecology and biological conservation: applications and guidelines. Methods Ecol. Evol. 6, 1097–1109 (2015).
Google Scholar
Sutherland, W. J. et al. A 2021 horizon scan of emerging global biological conservation issues. Trends Ecol. Evol. 36, 87–97 (2021).
Google Scholar
Source: Ecology - nature.com