in

A long-term reconstructed TROPOMI solar-induced fluorescence dataset using machine learning algorithms

  • Canadell, J. G. et al. Contributions to accelerating atmospheric CO2 growth from economic activity, carbon intensity, and efficiency of natural sinks. Proc. Natl. Acad. Sci. 104, 18866–18870 (2007).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Beer, C. et al. Terrestrial Gross Carbon Dioxide Uptake: Global Distribution and Covariation with Climate. Science 329, 834–838 (2010).

    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Park, T. et al. Changes in timing of seasonal peak photosynthetic activity in northern ecosystems. Global. Change. Biol. 25, 2382–2395 (2019).

    ADS 

    Google Scholar 

  • Wang, T. et al. Emerging negative impact of warming on summer carbon uptake in northern ecosystems. Nat. Commun. 9, 5391 (2018).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Farquhar, G. D., Von Caemmerer, S. & Berry, J. A. A biochemical model of photosynthetic CO2 assimilation in leaves of C3 species. Planta 149, 78–90 (1980).

    CAS 
    PubMed 

    Google Scholar 

  • Chen, J. M. et al. Effects of foliage clumping on the estimation of global terrestrial gross primary productivity. Global. Biogeochem. Cy 26, GB1019 (2012).

    ADS 

    Google Scholar 

  • De Pury, D. G. G. & Farquhar, G. D. Simple scaling of photosynthesis from leaves to canopies without the errors of big-leaf models. Plant Cell Environ. 20, 537–557 (1997).

    Google Scholar 

  • Zhang, Y. et al. Development of a coupled carbon and water model for estimating global gross primary productivity and evapotranspiration based on eddy flux and remote sensing data. Agr. Forest. Meteorol. 223, 116–131 (2016).

    ADS 

    Google Scholar 

  • Monteith, J. L. Climate and the efficiency of crop production in Britain. Philos. Trans. R. Soc. Lond., B, Biol. Sci. 281, 277–294 (1977).

    ADS 

    Google Scholar 

  • Running, S. W. et al. A continuous satellite-derived measure of global terrestrial primary production. Bioscience. 54, 547–560 (2004).

    Google Scholar 

  • Yuan, W. et al. Global estimates of evapotranspiration and gross primary production based on MODIS and global meteorology data. Remote Sens. Environ. 114, 1416–1431 (2010).

    ADS 

    Google Scholar 

  • Ruimy, A., Dedieu, G. & Saugier, B. TURC: A diagnostic model of continental gross primary productivity and net primary productivity. Global. Biogeochem. Cy 10, 269–285 (1996).

    ADS 
    CAS 

    Google Scholar 

  • Jung, M. et al. The FLUXCOM ensemble of global land-atmosphere energy fluxes. Sci. Data 6, 190076 (2019).

    Google Scholar 

  • Bodesheim, P., Jung, M., Gans, F., Mahecha, M. D. & Reichstein, M. Upscaled diurnal cycles of land–atmosphere fluxes: a new global half-hourly data product. Earth Syst. Sci. Data 10, 1327–1365 (2018).

    ADS 

    Google Scholar 

  • Joiner, J. et al. Estimation of Terrestrial Global Gross Primary Production (GPP) with Satellite Data-Driven Models and Eddy Covariance Flux Data. Remote Sens. 10, 1346 (2018).

    ADS 

    Google Scholar 

  • Xiao, J. et al. Data-driven diagnostics of terrestrial carbon dynamics over North America. Agr. Forest. Meteorol. 197, 142–157 (2014).

    ADS 

    Google Scholar 

  • Ichii, K. et al. New data-driven estimation of terrestrial CO2 fluxes in Asia using a standardized database of eddy covariance measurements, remote sensing data, and support vector regression. J. Geophys. Res. Biogeosci. 122, 767–795 (2017).

    CAS 

    Google Scholar 

  • Cai, W. et al. Improved estimations of gross primary production using satellite-derived photosynthetically active radiation. J. Geophys. Res. Biogeosci. 119, 110–123 (2014).

    Google Scholar 

  • Ma, J., Yan, X., Dong, W. & Chou, J. Gross primary production of global forest ecosystems has been overestimated. Sci. Rep. 5, 10820 (2015).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Cai, W. et al. Large Differences in Terrestrial Vegetation Production Derived from Satellite-Based Light Use Efficiency Models. Remote Sens. 6, 8945–8965 (2014).

    ADS 

    Google Scholar 

  • Jung, M. et al. Uncertainties of modeling gross primary productivity over Europe: A systematic study on the effects of using different drivers and terrestrial biosphere models. Global. Biogeochem. Cy 21, GB4021 (2007).

    ADS 

    Google Scholar 

  • Yuan, W. et al. Global comparison of light use efficiency models for simulating terrestrial vegetation gross primary production based on the LaThuile database. Agr. Forest. Meteorol. 192-193, 108–120 (2014).

    ADS 

    Google Scholar 

  • Frankenberg, C. et al. New global observations of the terrestrial carbon cycle from GOSAT: Patterns of plant fluorescence with gross primary productivity. Geophys. Res. Lett. 38, L17706 (2011).

    ADS 

    Google Scholar 

  • Joiner, J. et al. Global monitoring of terrestrial chlorophyll fluorescence from moderate-spectral-resolution near-infrared satellite measurements: methodology, simulations, and application to GOME-2. Atmos Meas Tech 6, 2803–2823 (2013).

    Google Scholar 

  • Frankenberg, C. et al. Prospects for chlorophyll fluorescence remote sensing from the Orbiting Carbon Observatory-2. Remote Sens. Environ. 147, 1–12 (2014).

    ADS 

    Google Scholar 

  • Joiner, J. et al. Filling-in of near-infrared solar lines by terrestrial fluorescence and other geophysical effects: simulations and space-based observations from SCIAMACHY and GOSAT. Atmos Meas Tech 5, 809–829 (2012).

    CAS 

    Google Scholar 

  • Köhler, P. et al. Global Retrievals of Solar‐Induced Chlorophyll Fluorescence With TROPOMI: First Results and Intersensor Comparison to OCO‐2. Geophys. Res. Lett. 45, 10,456–410,463 (2018).

    Google Scholar 

  • Joiner, J. et al. First observations of global and seasonal terrestrial chlorophyll fluorescence from space. Biogeosciences 8, 637–651 (2011).

    ADS 
    CAS 

    Google Scholar 

  • Guanter, L. et al. Retrieval and global assessment of terrestrial chlorophyll fluorescence from GOSAT space measurements. Remote Sens. Environ. 121, 236–251 (2012).

    ADS 

    Google Scholar 

  • Du, S. et al. Retrieval of global terrestrial solar-induced chlorophyll fluorescence from TanSat satellite. Sci. Bull. 63, 1502–1512 (2018).

    Google Scholar 

  • Baker, N. R. Chlorophyll fluorescence: a probe of photosynthesis in vivo. Annu. Rev. Plant Biol. 59, 89–113 (2008).

    CAS 
    PubMed 

    Google Scholar 

  • Drusch, M. et al. The FLuorescence EXplorer Mission Concept—ESA’s Earth Explorer 8. Ieee. T. Geosci. Remote 55, 1273–1284 (2017).

    ADS 

    Google Scholar 

  • Guanter, L. et al. The TROPOSIF global sun-induced fluorescence dataset from the Sentinel-5P TROPOMI mission. Earth Syst. Sci. Data, 13, 5423–5440 (2021).

  • Roesch, A. Use of Moderate-Resolution Imaging Spectroradiometer bidirectional reflectance distribution function products to enhance simulated surface albedos. J. Geophys. Res. 109 (2004).

  • Wan, Z. New refinements and validation of the collection-6 MODIS land-surface temperature/emissivity product. Remote Sens. Environ. 140, 36–45 (2014).

    ADS 

    Google Scholar 

  • Sulla-Menashe, D., Gray, J. M., Abercrombie, S. P. & Friedl, M. A. Hierarchical mapping of annual global land cover 2001 to present: The MODIS Collection 6 Land Cover product. Remote Sens. Environ. 222, 183–194 (2019).

    ADS 

    Google Scholar 

  • Su, W., Charlock, T. P., Rose, F. G. & Rutan, D. Photosynthetically active radiation from Clouds and the Earth’s Radiant Energy System (CERES) products. J. Geophys. Res. 112 (2007).

  • Still, C. J., Berry, J. A., Collatz, G. J. & Defries, R. S. Global distribution of C3and C4vegetation: Carbon cycle implications. Global. Biogeochem. Cy 17, 6-1-6-14 (2003).

  • Zhang, Y. et al. Spatio‐temporal convergence of maximum daily light‐use efficiency based on radiation absorption by canopy chlorophyll. Geophys. Res. Lett. 45, 3508–3519 (2018).

    ADS 

    Google Scholar 

  • Zhang, Z. et al. The potential of satellite FPAR product for GPP estimation: An indirect evaluation using solar-induced chlorophyll fluorescence. Remote Sens. Environ. 240, 111686 (2020).

    ADS 

    Google Scholar 

  • Baker, N. R. Chlorophyll Fluorescence: A Probe of Photosynthesis In Vivo. Annu. Rev. Plant. Biol. 59, 89–113 (2008).

    CAS 
    PubMed 

    Google Scholar 

  • Du, S., Liu, L., Liu, X. & Hu, J. Response of canopy solar-induced chlorophyll fluorescence to the absorbed photosynthetically active radiation absorbed by chlorophyll. Remote Sens. 9, 911 (2017).

    ADS 

    Google Scholar 

  • Rossini, M. et al. Analysis of Red and Far-Red Sun-Induced Chlorophyll Fluorescence and Their Ratio in Different Canopies Based on Observed and Modeled Data. Remote Sens. 8, 412 (2016).

    ADS 

    Google Scholar 

  • Verrelst, J. et al. Global sensitivity analysis of the SCOPE model: What drives simulated canopy-leaving sun-induced fluorescence? Remote Sens. Environ. 166, 8–21 (2015).

    ADS 

    Google Scholar 

  • Zhang, Q. et al. Estimating light absorption by chlorophyll, leaf and canopy in a deciduous broadleaf forest using MODIS data and a radiative transfer model. Remote Sens. Environ. 99, 357–371 (2005).

    ADS 

    Google Scholar 

  • Zhang, Y., Joiner, J., Alemohammad, S. H., Zhou, S. & Gentine, P. A global spatially contiguous solar-induced fluorescence (CSIF) dataset using neural networks. Biogeosciences 15, 5779–5800 (2018).

    ADS 
    CAS 

    Google Scholar 

  • Li, X. & Xiao, J. A Global, 0.05-Degree Product of Solar-Induced Chlorophyll Fluorescence Derived from OCO-2, MODIS, and Reanalysis Data. Remote Sens. 11, 517 (2019).

    ADS 

    Google Scholar 

  • Yu, L., Wen, J., Chang, C. Y., Frankenberg, C. & Sun, Y. High‐Resolution Global Contiguous SIF of OCO‐2. Geophys. Res. Lett. 46, 1449–1458 (2019).

    ADS 

    Google Scholar 

  • Ma, Y., Liu, L., Chen, R., Du, S. & Liu, X. Generation of a Global Spatially Continuous TanSat Solar-Induced Chlorophyll Fluorescence Product by Considering the Impact of the Solar Radiation Intensity. Remote Sens. 12, 2167 (2020).

    ADS 

    Google Scholar 

  • Gentine, P. & Alemohammad, S. H. Reconstructed Solar‐Induced Fluorescence: A Machine Learning Vegetation Product Based on MODIS Surface Reflectance to Reproduce GOME‐2 Solar‐Induced Fluorescence. Geophys. Res. Lett. 45, 3136–3146 (2018).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Wen, J. et al. A framework for harmonizing multiple satellite instruments to generate a long-term global high spatial-resolution solar-induced chlorophyll fluorescence (SIF). Remote Sens. Environ. 239, 111644 (2020).

    ADS 

    Google Scholar 

  • Yang, X. et al. Solar‐induced chlorophyll fluorescence that correlates with canopy photosynthesis on diurnal and seasonal scales in a temperate deciduous forest. Geophys. Res. Lett. 42, 2977–2987 (2015).

    ADS 
    CAS 

    Google Scholar 

  • Hain, C. R., Crow, W. T., Mecikalski, J. R., Anderson, M. C. & Holmes, T. An intercomparison of available soil moisture estimates from thermal infrared and passive microwave remote sensing and land surface modeling. J. Geophys. Res. 116, D15107 (2011).

    ADS 

    Google Scholar 

  • Anderson, M. C., Norman, J. M., Mecikalski, J. R., Otkin, J. A. & Kustas, W. P. A climatological study of evapotranspiration and moisture stress across the continental United States based on thermal remote sensing: 2. Surface moisture climatology. J. Geophys. Res. 112, D11112 (2007).

    ADS 

    Google Scholar 

  • Scherrer, D., Bader, M. K.-F. & Körner, C. Drought-sensitivity ranking of deciduous tree species based on thermal imaging of forest canopies. Agr. Forest. Meteorol. 151, 1632–1640 (2011).

    ADS 

    Google Scholar 

  • Duveiller, G. et al. A spatially downscaled sun-induced fluorescence global product for enhanced monitoring of vegetation productivity. Earth Syst. Sci. Data 12, 1101–1116 (2020).

    ADS 

    Google Scholar 

  • Zhang, Y. et al. A global moderate resolution dataset of gross primary production of vegetation for 2000–2016. Sci. Data 4, 170165 (2017).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Chen, T. & Guestrin, C. in Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. 785-794 (Association for Computing Machinery).

  • Hengl, T. et al. SoilGrids250m: Global gridded soil information based on machine learning. PLOS ONE 12, e0169748 (2017).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Li, Y., Li, M., Li, C. & Liu, Z. Forest aboveground biomass estimation using Landsat 8 and Sentinel-1A data with machine learning algorithms. Sci. Rep. 10, 9952 (2020).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Tan, W., Wei, C., Lu, Y. & Xue, D. Reconstruction of All-Weather Daytime and Nighttime MODIS Aqua-Terra Land Surface Temperature Products Using an XGBoost Approach. Remote Sens. 13, 4723 (2021).

    ADS 

    Google Scholar 

  • Adnan, M., Alarood, A. A. S., Uddin, M. I. & Ur Rehman, I. Utilizing grid search cross-validation with adaptive boosting for augmenting performance of machine learning models. PeerJ Comput. Sci. 8, e803 (2022).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Chen, X. A long-term reconstructed TROPOMI solar-induced fluorescence dataset using machine learning algorithms. figshare https://doi.org/10.6084/m9.figshare.19336346.v2 (2022).

  • Guanter, L. et al. Global and time-resolved monitoring of crop photosynthesis with chlorophyll fluorescence. Proc. Natl. Acad. Sci. 111, E1327–E1333 (2014).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Pierrat, Z. et al. Diurnal and seasonal dynamics of solar‐induced chlorophyll fluorescence, vegetation indices, and gross primary productivity in the boreal forest. J. Geophys. Res. Biogeosci., e2021JG006588 (2022).

  • Magney, T. S. et al. Mechanistic evidence for tracking the seasonality of photosynthesis with solar-induced fluorescence. Proc. Natl. Acad. Sci. 116, 11640–11645 (2019).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Grossmann, K. et al. PhotoSpec: A new instrument to measure spatially distributed red and far-red Solar-Induced Chlorophyll Fluorescence. Remote Sens. Environ. 216, 311–327 (2018).

    ADS 

    Google Scholar 

  • Li, Z. et al. Solar-induced chlorophyll fluorescence and its link to canopy photosynthesis in maize from continuous ground measurements. Remote Sens. Environ. 236, 111420 (2020).

    ADS 

    Google Scholar 

  • Magney, T. S. et al. Mechanistic evidence for tracking the seasonality of photosynthesis with solar-induced fluorescence. Proc. Natl. Acad. Sci. 201900278 (2019).

  • Wei, X., Wang, X., Wei, W. & Wan, W. Use of Sun-Induced Chlorophyll Fluorescence Obtained by OCO-2 and GOME-2 for GPP Estimates of the Heihe River Basin, China. Remote Sens. 10, 2039 (2018).

    ADS 

    Google Scholar 

  • Walther, S. et al. Satellite chlorophyll fluorescence measurements reveal large‐scale decoupling of photosynthesis and greenness dynamics in boreal evergreen forests. Global. Change. Biol. 22, 2979–2996 (2016).

    ADS 

    Google Scholar 

  • Köhler, P., Guanter, L. & Joiner, J. A linear method for the retrieval of sun-induced chlorophyll fluorescence from GOME-2 and SCIAMACHY data. Atmos. Meas. Tech. 8, 2589–2608 (2015).

    Google Scholar 

  • Parazoo, N. C. et al. Towards a Harmonized Long‐Term Spaceborne Record of Far‐Red Solar‐Induced Fluorescence. J. Geophys. Res. Biogeosci. 124, 2518–2539 (2019).

    Google Scholar 

  • Pastorello, G. et al. The FLUXNET2015 dataset and the ONEFlux processing pipeline for eddy covariance data. Sci. Data 7 (2020).

  • Reichstein, M. et al. On the separation of net ecosystem exchange into assimilation and ecosystem respiration: review and improved algorithm. Global. Change. Biol. 11, 1424–1439 (2005).

    ADS 

    Google Scholar 

  • Lasslop, G. et al. Separation of net ecosystem exchange into assimilation and respiration using a light response curve approach: critical issues and global evaluation. Global. Change. Biol. 16, 187–208 (2010).

    ADS 

    Google Scholar 

  • Chen, C. et al. China and India lead in greening of the world through land-use management. Nat. Sustain. 2, 122–129 (2019).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Tong, X. et al. Increased vegetation growth and carbon stock in China karst via ecological engineering. Nat. Sustain. 1, 44–50 (2018).

    Google Scholar 

  • Miettinen, J., Shi, C. & Liew, S. C. Deforestation rates in insular Southeast Asia between 2000 and 2010. Global. Change. Biol. 17, 2261–2270 (2011).

    ADS 

    Google Scholar 

  • De, S. V. et al. Land use patterns and related carbon losses following deforestation in South America. Environ. Res. Lett. 10, 124004 (2015).

    ADS 

    Google Scholar 

  • Huete, A. et al. Overview of the radiometric and biophysical performance of the MODIS vegetation indices. Remote Sens. Environ. 83, 195–213 (2002).

    ADS 

    Google Scholar 

  • Still, C. J., Berry, J. A., Collatz, G. J. & Defries, R. S. ISLSCP II C4 Vegetation Percentage, ORNL Distributed Active Archive Center, https://doi.org/10.3334/ORNLDAAC/932 (2009).

  • Pierrat, Z. & Stutz, J. Tower-based solar-induced fluorescence and vegetation index data for Southern Old Black Spruce forest, Zenodo, https://doi.org/10.5281/ZENODO.5884643 (2022).

  • Magney, T. et al. Canopy and needle scale fluorescence data from Niwot Ridge, Colorado 2017-2018, CaltechDATA, https://doi.org/10.22002/D1.1231 (2019).

  • Wan, Z., Hook, S. & Hulley, G. MOD11C1 MODIS/Terra Land Surface Temperature/Emissivity Daily L3 Global 0.05Deg CMG V006, NASA EOSDIS Land Processes DAAC, https://doi.org/10.5067/MODIS/MOD11C1.006 (2015).

  • Friedl, M. & Sulla-Menashe, D. MCD12C1 MODIS/Terra+Aqua Land Cover Type Yearly L3 Global 0.05Deg CMG V006, NASA EOSDIS Land Processes DAAC, https://doi.org/10.5067/MODIS/MCD12C1.006 (2015).

  • Schaaf, C. & Wang, Z. MCD43C4 MODIS/Terra+Aqua BRDF/Albedo Nadir BRDF-Adjusted Ref Daily L3 Global 0.05Deg CMG V006, NASA EOSDIS Land Processes DAAC, https://doi.org/10.5067/MODIS/MCD43C4.006 (2015).

  • Doelling, D. CERES Level 3 SYN1DEG-DAYTerra+Aqua HDF4 file – Edition 4A, NASA Langley Atmospheric Science Data Center DAAC, https://doi.org/10.5067/TERRA+AQUA/CERES/SYN1DEGDAY_L3.004A (2017).


  • Source: Ecology - nature.com

    Fusion’s newest ambassador

    Silk offers an alternative to some microplastics