Takoutsing, B. et al. Assessment of soil health indicators for sustainable production of maize in smallholder farming systems in the highlands of Cameroon. Geoderma 276, 64–73 (2016).
Google Scholar
Wenzel, W. W. et al. Soil and land use factors control organic caron status and accumulation in agricultural soils of Lower Austria. Geoderma 409, 115595. https://doi.org/10.1016/j.geoderma.2021.115595 (2022).
Google Scholar
Rinot, O., Levy, G. J., Steinberger, Y., Svoray, T. & Eshel, G. Soil health assessment: A critical review of current methodologies and a proposed new approach. Sci. Total. Environ. 648, 1484–1491 (2019).
Google Scholar
Veum, K. S., Sudduth, K. A., Kremer, R. J. & Kitchen, R. (2017) Sensor data fusion for soil health assessment. Geoderma 305, 53–61 (2017).
Google Scholar
Nunes, M. R., Van Es, H. M., Schindelbeck, R., Ristow, A. J. & Ryan, M. No-till and cropping system diversification improve soil health and crop yield. Geoderma 328, 30–43 (2018).
Google Scholar
Chhipaa, V., Stein, A., Shankar, H., George, K. J. & Alidoost, F. Assessing and transferring soil health information in a hilly terrain. Geoderma 343, 130–138 (2019).
Google Scholar
Oliver, D. P., Bramley, R. G. V., Riches, D., Porter, I. & Edwards, J. A review of soil physical and chemical properties as indicators of soil quality in Australian viticulture. Aust. J. Grape Wine Res. 19, 129–139 (2013).
Google Scholar
Riches, D. et al. Review: soil biological properties as indicators of soil quality in Australian viticulture. Aust. J. Grape Wine Res. 19, 311–323 (2013).
Google Scholar
Ritz, K., Black, H. I. J., Campbell, C. D., Harris, J. A. & Wood, C. Selecting biological indicators for monitoring soils: a framework for balancing scientific opinion to assist policy development. Ecol. Ind. 9, 1212–1221 (2009).
Google Scholar
Zhuo, Z., Kirchner, I., Pfahl, S. & Cubasch, U. Climate impact of volcanic eruptions: the sensitivity to eruption season and latitude in MPI-ESM ensemble experiments. Atmos. Chem. Phys. 21, 13425–13442 (2021).
Google Scholar
Griffiths, B. S., Bonkowski, M., Roy, J. & Ritz, K. Functional stability, substrate utilisation and biological indicators of soils following environmental impacts. Appl. Soil Ecol. 16(1), 49–61 (2001).
Google Scholar
Avidano, L., Gamalero, E., Cossa, G. P. & Carraro, E. Characterization of soil health in an Italian polluted site by using microorganisms as bioindicators. Appl. Soil Ecol. 30(1), 21–33 (2005).
Google Scholar
Pattison, A. B. et al. Development of key soil health indicators for the Australian banana industry. Appl. Soil Ecol. 40(1), 155–164 (2008).
Google Scholar
Damsma, K. M., Rose, M. T. & Cavagnaro, T. R. Landscape scale survey of indicators of soil health in grazing systems. Soil Res. 53(2), 154–167 (2015).
Google Scholar
Fine, A. K., van Es, H. M. & Schindelbeck, R. R. Statistics, scoring functions, and regional analysis of a comprehensive soil health database. Soil Sci. Soc. Am. J. 81(3), 589–601 (2016).
Google Scholar
Roper, W. R., Osmond, D. L., Heitman, J. L., Wagger, M. G. & Reberg-Horton, S. C. Soil Health indicators do not differentiate among agronomic management systems in North Carolina soils. Soil Sci. Soc. Am. J. 81(4), 828–843 (2016).
Google Scholar
Li, Z. et al. Rapid diagnosis of agricultural soil health: A novel soil health index based on natural soil productivity and human management. J. Environ. Manage. 277, 111402. https://doi.org/10.1016/j.jenvman.2020.111402 (2021).
Google Scholar
Oren, A. & Steinberger, Y. Catabolic profiles of soil fungal communities along a geographic climatic gradient in Israel. Soil Biol. Biochem. 40, 2578–2587 (2008).
Google Scholar
Yu, J., Glazer, N. & Steinberger, Y. Carbon utilization, microbial biomass, and respiration in biological soil crusts in the Negev Desert. Biol. Fert. Soils 50, 285–293 (2014).
Google Scholar
Van der Putten, W. H. et al. Plant–soil feedbacks: the past, the present and future challenges. J. Ecol. 101, 265–276 (2013).
Google Scholar
Sherman, C. & Steinberger, Y. Microbial functional diversity associated with plant litter decomposition along a climatic gradient. Microb. Ecol. 64, 399–415 (2012).
Google Scholar
Dwivedi, V. & Soni, P. A review on the role of soil microbial biomass in eco-restoration of degraded ecosystem with special reference to mining areas. J. Appl. Nat. Sci. 3(1), 151–158 (2011).
Google Scholar
Barreiro, A., Martín, A., Carballas, T. & Díaz-Raviña, M. Long-term response of soil microbial communities to fire and fire-fighting chemicals. Biol. Fertil. Soils 52, 963–975 (2016).
Google Scholar
Soil Science Division Staff. Soil survey manual. In USDA Handbook 18 (ed. Ditzler, C., Scheffe, K. & Monger, H.C.). (Washington, G. P. O., 2017).
Campbell, C. D., Chapman, S. J., Cameron, C. M., Davidson, M. S. & Potts, J. M. A rapid microtiter plate method to measure carbon dioxide evolved from carbon substrate amendments so as to determine the physiological profiles of soil microbial communities by using whole soil. Appl. Environ. Microbiol. 69, 3593–3599 (2003).
Google Scholar
Anderson, J. P. E. & Domsch, K. H. Physiological method for quantitative measurement of microbial biomass in soils. Soil Biol. Biochem. 10, 215–221 (1978).
Google Scholar
Creamer, R. E., Stone, D., Berry, P. & Kuiper, I. Measuring respiration profiles of soil microbial communities across Europe using MicroResp™ method. Appl. Soil Ecol. 97, 36–43 (2016).
Google Scholar
Oren, A. & Steinberger, Y. Coping with artifacts induced by CaCO3–CO2–H2O equilibria in substrate utilization profiling of calcareous soils. Soil Biol. Biochem. 40, 2569–2577 (2008).
Google Scholar
Zak, J. C., Willig, M. R., Howard, D. L. & Wildman, G. Functional diversity of microbial communities: A quantitative approach. Soil Biol. Biochem. 26(9), 1101–1108 (1994).
Google Scholar
Hotelling, H. The most predictable criterion. J. Educ. Psychol. 26, 139–142 (1935).
Google Scholar
Morrison, D. F. Multivariate Statistical Methods 2nd edn. (McGraw-Hill, 1976).
Google Scholar
Rencher, A. C. Methods of Multivariate Analysis (Wiley, Uk, 1995).
Google Scholar
IBM Corp. Released 2020. IBM SPSS Statistics for Windows, Version 27.0. (Armonk, NY: IBM Corp., 2020)
R Core Team. A language and environment for statistical computing (R Foundation for Statistical Computing, 2021).
Bartoń K. MuMIn: Multi-Model Inference. R package version 1.46.0, https://CRAN.R-project.org/package=MuMIn, 2022.
Wickham, H. ggplot2: Elegant Graphics for Data Analysis (Springer-Verlag, 2016).
Google Scholar
Johnson, J. B. & Omland, K. S. Model selection in ecology and evolution. Trends Ecol. Evol. 19, 101–108 (2004).
Google Scholar
Kiryushin, V. I. The management of soil fertility and productivity of agrocenoses in adaptive-landscape farming systems. Eurasian Soil Sci. 52, 1137–1145 (2019).
Google Scholar
Hermans, S. M. et al. Using soil bacterial communities to predict physic-chemical variables and soil quality. Microbiome 8, 79 (2020).
Google Scholar
Fierer, N. & Jackson, R. B. The diversity and biogeography of soil bacterial communities. Proc. Natl. Acad. Sci. U. S. A. 103, 626–631 (2006).
Google Scholar
Frey, S. D., Drijber, R., Smith, H. & Melillo, J. M. Microbial biomass, functional capacity, and community structure after 12 years of soil warming. Soil Biol. Biochem. 40, 2904–2907 (2008).
Google Scholar
Powlson, D. S., Brookes, P. C. & Christensen, B. T. Measurement of soil microbial biomass provides an early indication of changes in total soil organic matter due to straw incorporation. Soil Biol. Biochem. 19, 159–164 (1987).
Google Scholar
Brookes, P. C. The use of microbial parameters in monitoring soil pollution by heavy metals. Biol. Fertil. Soils. 19, 269–279 (1995).
Google Scholar
Hermans, S. M. et al. Bacteria as emerging indicators of soil condition. Appl. Environ. Microbiol. 83, e02826-e2916. https://doi.org/10.1128/AEM.02826-16 (2016).
Google Scholar
Liddicoat, C. et al. Can bacterial indicators of a grassy woodland restoration inform ecosystem assessment and microbiota-mediated human health?. Environ. Int. 129, 105–117 (2019).
Google Scholar
Jeanne, T., Parent, S. -É. & Hogue, R. Using a soil bacterial species balance index to estimate potato crop productivity. PLoS ONE 14, e0214089. https://doi.org/10.1371/journal.pone.0214089 (2019).
Google Scholar
Taylor, B. R. & Parkinson, D. Respiration and mass loss rates of aspen and pine leaf litter decomposing in laboratory microcosms. Can. J. Bot. 66, 1948–1959 (1988).
Google Scholar
Wardle, D. A. & Parkinson, D. Response of the soil microbial biomass to glucose, and selective inhibitors, across a soil moisture gradient. Soil Biol. Biochem. 22, 825–834 (1990).
Google Scholar
Baldrian, P., Merhautová, V., Petránková, M., Cajthaml, T. & Snajdr, J. Distribution of microbial biomass and activity of extracellular enzymes in a hardwood forest soil reflect soil moisture content. Appl. Soil Ecol. 46, 177–182 (2010).
Google Scholar
Holland, T. C. et al. The response of soil biota to water availability in vineyards. Pedobiol. Int. J. Soil Biol. 56, 9–14 (2013).
Yu, J. & Steinberger, Y. Vertical distribution of microbial-community functionality under the canopies of Zygophyllum dumosum and Hammada scoparia in the Negev Desert. Microb. Ecol. 62, 218–227 (2011).
Google Scholar
Wardle, D. A. & Parkinson, D. Interaction between microclimatic variables and the soil microbial biomass. Biol. Fertil. Soils. 9, 273–280 (1990).
Google Scholar
Source: Ecology - nature.com