in

A sensitive soil biological indicator to changes in land-use in regions with Mediterranean climate

  • Takoutsing, B. et al. Assessment of soil health indicators for sustainable production of maize in smallholder farming systems in the highlands of Cameroon. Geoderma 276, 64–73 (2016).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Wenzel, W. W. et al. Soil and land use factors control organic caron status and accumulation in agricultural soils of Lower Austria. Geoderma 409, 115595. https://doi.org/10.1016/j.geoderma.2021.115595 (2022).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Rinot, O., Levy, G. J., Steinberger, Y., Svoray, T. & Eshel, G. Soil health assessment: A critical review of current methodologies and a proposed new approach. Sci. Total. Environ. 648, 1484–1491 (2019).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Veum, K. S., Sudduth, K. A., Kremer, R. J. & Kitchen, R. (2017) Sensor data fusion for soil health assessment. Geoderma 305, 53–61 (2017).

    Article 
    ADS 

    Google Scholar 

  • Nunes, M. R., Van Es, H. M., Schindelbeck, R., Ristow, A. J. & Ryan, M. No-till and cropping system diversification improve soil health and crop yield. Geoderma 328, 30–43 (2018).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Chhipaa, V., Stein, A., Shankar, H., George, K. J. & Alidoost, F. Assessing and transferring soil health information in a hilly terrain. Geoderma 343, 130–138 (2019).

    Article 
    ADS 

    Google Scholar 

  • Oliver, D. P., Bramley, R. G. V., Riches, D., Porter, I. & Edwards, J. A review of soil physical and chemical properties as indicators of soil quality in Australian viticulture. Aust. J. Grape Wine Res. 19, 129–139 (2013).

    Article 
    CAS 

    Google Scholar 

  • Riches, D. et al. Review: soil biological properties as indicators of soil quality in Australian viticulture. Aust. J. Grape Wine Res. 19, 311–323 (2013).

    CAS 

    Google Scholar 

  • Ritz, K., Black, H. I. J., Campbell, C. D., Harris, J. A. & Wood, C. Selecting biological indicators for monitoring soils: a framework for balancing scientific opinion to assist policy development. Ecol. Ind. 9, 1212–1221 (2009).

    Article 
    CAS 

    Google Scholar 

  • Zhuo, Z., Kirchner, I., Pfahl, S. & Cubasch, U. Climate impact of volcanic eruptions: the sensitivity to eruption season and latitude in MPI-ESM ensemble experiments. Atmos. Chem. Phys. 21, 13425–13442 (2021).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Griffiths, B. S., Bonkowski, M., Roy, J. & Ritz, K. Functional stability, substrate utilisation and biological indicators of soils following environmental impacts. Appl. Soil Ecol. 16(1), 49–61 (2001).

    Article 

    Google Scholar 

  • Avidano, L., Gamalero, E., Cossa, G. P. & Carraro, E. Characterization of soil health in an Italian polluted site by using microorganisms as bioindicators. Appl. Soil Ecol. 30(1), 21–33 (2005).

    Article 

    Google Scholar 

  • Pattison, A. B. et al. Development of key soil health indicators for the Australian banana industry. Appl. Soil Ecol. 40(1), 155–164 (2008).

    Article 

    Google Scholar 

  • Damsma, K. M., Rose, M. T. & Cavagnaro, T. R. Landscape scale survey of indicators of soil health in grazing systems. Soil Res. 53(2), 154–167 (2015).

    Article 

    Google Scholar 

  • Fine, A. K., van Es, H. M. & Schindelbeck, R. R. Statistics, scoring functions, and regional analysis of a comprehensive soil health database. Soil Sci. Soc. Am. J. 81(3), 589–601 (2016).

    Article 

    Google Scholar 

  • Roper, W. R., Osmond, D. L., Heitman, J. L., Wagger, M. G. & Reberg-Horton, S. C. Soil Health indicators do not differentiate among agronomic management systems in North Carolina soils. Soil Sci. Soc. Am. J. 81(4), 828–843 (2016).

    Article 

    Google Scholar 

  • Li, Z. et al. Rapid diagnosis of agricultural soil health: A novel soil health index based on natural soil productivity and human management. J. Environ. Manage. 277, 111402. https://doi.org/10.1016/j.jenvman.2020.111402 (2021).

    Article 

    Google Scholar 

  • Oren, A. & Steinberger, Y. Catabolic profiles of soil fungal communities along a geographic climatic gradient in Israel. Soil Biol. Biochem. 40, 2578–2587 (2008).

    Article 
    CAS 

    Google Scholar 

  • Yu, J., Glazer, N. & Steinberger, Y. Carbon utilization, microbial biomass, and respiration in biological soil crusts in the Negev Desert. Biol. Fert. Soils 50, 285–293 (2014).

    Article 
    CAS 

    Google Scholar 

  • Van der Putten, W. H. et al. Plant–soil feedbacks: the past, the present and future challenges. J. Ecol. 101, 265–276 (2013).

    Article 

    Google Scholar 

  • Sherman, C. & Steinberger, Y. Microbial functional diversity associated with plant litter decomposition along a climatic gradient. Microb. Ecol. 64, 399–415 (2012).

    Article 
    CAS 

    Google Scholar 

  • Dwivedi, V. & Soni, P. A review on the role of soil microbial biomass in eco-restoration of degraded ecosystem with special reference to mining areas. J. Appl. Nat. Sci. 3(1), 151–158 (2011).

    Article 

    Google Scholar 

  • Barreiro, A., Martín, A., Carballas, T. & Díaz-Raviña, M. Long-term response of soil microbial communities to fire and fire-fighting chemicals. Biol. Fertil. Soils 52, 963–975 (2016).

    Article 
    CAS 

    Google Scholar 

  • Soil Science Division Staff. Soil survey manual. In USDA Handbook 18 (ed. Ditzler, C., Scheffe, K. & Monger, H.C.). (Washington, G. P. O., 2017).

  • Campbell, C. D., Chapman, S. J., Cameron, C. M., Davidson, M. S. & Potts, J. M. A rapid microtiter plate method to measure carbon dioxide evolved from carbon substrate amendments so as to determine the physiological profiles of soil microbial communities by using whole soil. Appl. Environ. Microbiol. 69, 3593–3599 (2003).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Anderson, J. P. E. & Domsch, K. H. Physiological method for quantitative measurement of microbial biomass in soils. Soil Biol. Biochem. 10, 215–221 (1978).

    Article 
    CAS 

    Google Scholar 

  • Creamer, R. E., Stone, D., Berry, P. & Kuiper, I. Measuring respiration profiles of soil microbial communities across Europe using MicroResp™ method. Appl. Soil Ecol. 97, 36–43 (2016).

    Article 

    Google Scholar 

  • Oren, A. & Steinberger, Y. Coping with artifacts induced by CaCO3–CO2–H2O equilibria in substrate utilization profiling of calcareous soils. Soil Biol. Biochem. 40, 2569–2577 (2008).

    Article 
    CAS 

    Google Scholar 

  • Zak, J. C., Willig, M. R., Howard, D. L. & Wildman, G. Functional diversity of microbial communities: A quantitative approach. Soil Biol. Biochem. 26(9), 1101–1108 (1994).

    Article 

    Google Scholar 

  • Hotelling, H. The most predictable criterion. J. Educ. Psychol. 26, 139–142 (1935).

    Article 

    Google Scholar 

  • Morrison, D. F. Multivariate Statistical Methods 2nd edn. (McGraw-Hill, 1976).

    MATH 

    Google Scholar 

  • Rencher, A. C. Methods of Multivariate Analysis (Wiley, Uk, 1995).

    MATH 

    Google Scholar 

  • IBM Corp. Released 2020. IBM SPSS Statistics for Windows, Version 27.0. (Armonk, NY: IBM Corp., 2020)

  • R Core Team. A language and environment for statistical computing (R Foundation for Statistical Computing, 2021).

    Google Scholar 

  • Bartoń K. MuMIn: Multi-Model Inference. R package version 1.46.0, https://CRAN.R-project.org/package=MuMIn, 2022.

  • Wickham, H. ggplot2: Elegant Graphics for Data Analysis (Springer-Verlag, 2016).

    Book 
    MATH 

    Google Scholar 

  • Johnson, J. B. & Omland, K. S. Model selection in ecology and evolution. Trends Ecol. Evol. 19, 101–108 (2004).

    Article 

    Google Scholar 

  • Kiryushin, V. I. The management of soil fertility and productivity of agrocenoses in adaptive-landscape farming systems. Eurasian Soil Sci. 52, 1137–1145 (2019).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Hermans, S. M. et al. Using soil bacterial communities to predict physic-chemical variables and soil quality. Microbiome 8, 79 (2020).

    Article 
    CAS 

    Google Scholar 

  • Fierer, N. & Jackson, R. B. The diversity and biogeography of soil bacterial communities. Proc. Natl. Acad. Sci. U. S. A. 103, 626–631 (2006).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Frey, S. D., Drijber, R., Smith, H. & Melillo, J. M. Microbial biomass, functional capacity, and community structure after 12 years of soil warming. Soil Biol. Biochem. 40, 2904–2907 (2008).

    Article 
    CAS 

    Google Scholar 

  • Powlson, D. S., Brookes, P. C. & Christensen, B. T. Measurement of soil microbial biomass provides an early indication of changes in total soil organic matter due to straw incorporation. Soil Biol. Biochem. 19, 159–164 (1987).

    Article 
    CAS 

    Google Scholar 

  • Brookes, P. C. The use of microbial parameters in monitoring soil pollution by heavy metals. Biol. Fertil. Soils. 19, 269–279 (1995).

    Article 
    CAS 

    Google Scholar 

  • Hermans, S. M. et al. Bacteria as emerging indicators of soil condition. Appl. Environ. Microbiol. 83, e02826-e2916. https://doi.org/10.1128/AEM.02826-16 (2016).

    Article 

    Google Scholar 

  • Liddicoat, C. et al. Can bacterial indicators of a grassy woodland restoration inform ecosystem assessment and microbiota-mediated human health?. Environ. Int. 129, 105–117 (2019).

    Article 

    Google Scholar 

  • Jeanne, T., Parent, S. -É. & Hogue, R. Using a soil bacterial species balance index to estimate potato crop productivity. PLoS ONE 14, e0214089. https://doi.org/10.1371/journal.pone.0214089 (2019).

    Article 
    CAS 

    Google Scholar 

  • Taylor, B. R. & Parkinson, D. Respiration and mass loss rates of aspen and pine leaf litter decomposing in laboratory microcosms. Can. J. Bot. 66, 1948–1959 (1988).

    Article 

    Google Scholar 

  • Wardle, D. A. & Parkinson, D. Response of the soil microbial biomass to glucose, and selective inhibitors, across a soil moisture gradient. Soil Biol. Biochem. 22, 825–834 (1990).

    Article 
    CAS 

    Google Scholar 

  • Baldrian, P., Merhautová, V., Petránková, M., Cajthaml, T. & Snajdr, J. Distribution of microbial biomass and activity of extracellular enzymes in a hardwood forest soil reflect soil moisture content. Appl. Soil Ecol. 46, 177–182 (2010).

    Article 

    Google Scholar 

  • Holland, T. C. et al. The response of soil biota to water availability in vineyards. Pedobiol. Int. J. Soil Biol. 56, 9–14 (2013).

    Google Scholar 

  • Yu, J. & Steinberger, Y. Vertical distribution of microbial-community functionality under the canopies of Zygophyllum dumosum and Hammada scoparia in the Negev Desert. Microb. Ecol. 62, 218–227 (2011).

    Article 

    Google Scholar 

  • Wardle, D. A. & Parkinson, D. Interaction between microclimatic variables and the soil microbial biomass. Biol. Fertil. Soils. 9, 273–280 (1990).

    Article 

    Google Scholar 


  • Source: Ecology - nature.com

    Manufacturing a cleaner future

    MIT community in 2022: A year in review