in

A survey of vocal mimicry in companion parrots

It is well known that parrots are excellent vocal learners; here we quantified that ability across a wide variety of species, using human mimicry as a proxy for vocal learning of natural repertoires. Results confirm that parrot vocal mimicry varies substantially both within and among species22. Parrot age, social interactions, and sex do not appear to be universal drivers of vocal learning ability within the order Psittaciformes, but all of these factors may have effects within individual species.

Vocal learning variation by species

Within species, mimicry sound repertoires are extremely variable bird to bird; for example, our data indicate that a grey parrot may mimic anywhere from 0 to 600 different human words. Many other species showed smaller repertoires but similar variability. It is not entirely clear whether this range of variation would be present in natural sounds within wild parrot populations, but research has demonstrated intraspecific repertoire size variation in multiple species of parrots30,31.

The vast majority of parrots presented a pattern in which their repertoire size was largest for words, intermediate for phrases (composed of the reported words), and smallest for non-linguistic sounds (Fig. 2). In the wild, parrots mimic the most socially relevant vocalizations, and presumably do so in captivity as well15. Thus, the spoken word and phrase interactions with their human “flock” likely reflect the most socially relevant cues. The interesting exceptions to this pattern were Fischer’s lovebirds, cockatiels, and Senegal parrots who all used more sounds than phrases. Cockatiels are well-known in the pet world to be excellent whistlers, and thus it was satisfying to see that our data support that informal information. We suspect that deviations from the typical patterns may represent acoustic learning preferences, templates, or limitations32.

Although individual variation was substantial, we nevertheless saw strong evidence that overall vocal learning abilities differed by species. Pacific parrotlets and sun parakeets showed very limited human mimicry, while grey parrots, Amazona parrots, cockatoos, and macaws were generally very accomplished mimics. The patterns that we documented appeas to reflect natural vocal repertoire variation across species. The documented calls of wild parrots generally range from 5 to 15 calls25,33,34,35,36. Several species, however, present additional complexity: yellow-naped parrots (Amazona auropalliata), palm cockatoos (Probosciger aterrimus), and grey parrots all have natural repertoires of more than 25 discrete elements, with additional elements given in duets13,27,37 Members of these three groups, grey parrots, Amazona parrots and cockatoos also had relatively large repertoires in our study. In several of these species (particularly grey parrots) our measure of mimicked “words” (60) was higher than estimates of natural call “elements” (39) in the literature27. This discrepancy suggests that parrots are capable of learning vocalizations with more than 25 elements and, simultaneously, might reflect a sampling bias wherein survey-takers are more likely to report on individuals with high mimicry ability.

Parrot species varied in their tendency to improvise new combinations of elements, although most species did rearrange words to some degree. Research shows that parrot vocalization length and structure carry signal content, so there may be selective pressures favoring this ability24,33. If so, then our data suggest that those pressures are strongest in some cockatoos and weakest in sun parakeets and green-cheeked parakeets. In general, species with larger repertoires also showed more vocal flexibility (Fig. 2, Appendix 6). Additionally, wild birds typically use particular vocalizations in set contexts, so the ability to do so is likely to be adaptive24. Previous studies of captive parrots have demonstrated contextual use of mimicked words, both in tutored lab settings and in home-raised birds28,38. In our sample, contextual use of learned sounds was supported across 89% of individuals and most species. Survey-taker responses on this topic are necessarily subjective, so we emphasize that this rate of contextual use should be interpreted as a general estimate. Nevertheless, the data indicated that parrots frequently associated mimicked human sounds with appropriate human contexts. This finding is particularly revealing because the relevant human contexts are, by their nature, outside the range of typical wild parrot experiences. Contextual vocalization use must, therefore, rely on extremely flexible vocal learning mechanisms.

Vocal learning variation by age

On average, birds aged with high confidence were younger than those aged with low or medium confidence. This pattern might indicate that people tend to overestimate the age of captive birds of uncertain age. This pattern might also reflect the facts that older birds are more likely to be wild-caught and that younger birds are more likely to have good hatch-date documentation. In either case, there are few ramifications of inaccurate age estimates relating to vocal behavior because our data gave no evidence that adult vocal mimicry repertoires varied with age. Our analyses of grey parrots confirmed that repertoires expanded through the juvenile phase, but did not show reliable expansion among adults. Studies of wild birds indicate that parrots can learn vocalizations throughout life; such open-ended learning is limited to a subset of vocal learning species, and can generate different outcomes as animals age15. In some species, animals can add new vocal features over the course of a lifetime, leading to repertoire expansion39,40. In other species, animals may replace parts of their repertoire with newly-learned vocalizations, leading to stable vocal production repertoire sizes across age groups39,41. Our data suggest that parrots fit the second pattern; although they are open-ended vocal learners, their adult repertoires change more by element replacement, than by expansion. This does not necessarily imply that vocalizations are “forgotten” through time, but merely that some sounds are no longer used as conditions change42. Many parrot vocalizations function in social coordination with flock-mates22. The fission–fusion nature of parrot flocks creates changing social conditions for each individual over its lifetime43. A vocal replacement model for repertoire learning would allow individuals to adjust their vocal signatures to match new social situations and stop producing vocalizations that are no longer socially relevant11,44.

Vocal learning variation by sex

Our analyses of the full data set confirmed the generally held understanding that males and females in most species of parrots have similar vocal learning abilities15. We did, however see sex differences in some species that merit future study. First, we found a substantial overrepresentation of males in our sample. This could be interpreted several ways; (1) there are legitimately more males in the parrot pet trade, (2) pet owners are giving us accurate data but are more likely to give us data on males or (3) some bias exists in which pet owners assume their talking parrots are males, rather than females. Possibilities 1 and 2 seem unlikely because after we eliminated all parrots sexed with low confidence, we were left with a nearly 1:1 ratio of males:females in the subset of parrots that were sexed with high confidence. That trend suggests that the male bias in our data comes (at least in part) from a human tendency to label their pet parrots as male when the sex is not clear. Among songbirds, there is a strong tendency to assume that singing birds are male, and a similar bias may hold true for parrots45. It is unclear whether parrots in this study were mislabeled as male because they vocalize or, more simply, because that is the default human tendency for any animal.

Although we conclude that some of the male bias in our data is human error, we also saw patterns that suggest real sex differences in vocal learning some species. For example, Pacific parrotlets are a dimorphic species, and all of our sampled birds were sexed by plumage46. Thus, we expect sexing in this species to be fairly accurate. Our data set included 10 males and no females, a bias unlikely to result purely from sampling error. We saw a similar trend in cockatiels for which there was a large overabundance of males in the data set, even among the 17 birds sexed with high confidence. Humans may be more likely to report on parrots that are good mimics. Therefore, the results likely reflect a real-world tendency for male cockatiels to mimic more human sounds than females. Figure 3 suggests that the same might be true for galahs, sulphur-crested cockatoos, rose-ringed parakeets, Senegal parrots, and budgerigars. Existing research supports the idea that sex differences in vocal behavior are important in several of these species. Among galahs, male and female calls evoke different responses47, and patterns of call adjustment vary by sex among budgerigars20. We also note that several of these species (Pacific parrotlets, rose-ringed parakeets, budgerigars, and cockatiels; Appendix 2b) show sex-based differences in both plumage and vocal learning, raising questions about whether those traits co-evolve.

In addition to sex-based differences in the tendency to mimic humans, several well-sampled species showed evidence of sex-based differences in repertoire sizes. Particularly interesting are the blue-and-yellow macaws, in which repertoire size was significantly male-biased. We had more females (15) than males (9) in the data set, but males used on average 3–4 times as many mimicry sounds, phrases and words as females did. Galahs and budgerigars showed a similar male-bias in repertoire sizes, matching the trend of males being overrepresented in our data set for those two species. Prior research on galahs and budgerigars has found that males can be more vocal and more flexible with their vocalizations; perhaps these abilities translate to learning more call types20,47. A similar, but weaker, male mimicry increase occurred in rose-ringed parakeets. In only one species, yellow-headed parrots, did females show a significantly larger mimicry repertoire than males in any category (Appendix 5). Interestingly, the tendency to mimic humans (measured as sampling in the data set) and repertoire sizes did not always show the same patterns. Among sulphur-crested cockatoos, cockatiels, and Senegal parrots, males were more likely to show human mimicry, but their repertoires were not larger than the repertoires of females. This suggests that in some species, females may be less likely to mimic vocalizations, but when they do so they have just as large a vocabulary as males.

The reported sex differences in parrot vocal mimicry repertoires are intriguing, but also are tentative conclusions. In many species, including our best sampled species, grey parrots, we saw no evidence of sex-differences in repertoire size. The sex-biases that we did document lose statistical significance after controlling for the many comparisons that we conducted. Nevertheless, we expect that some of our data represent true biological differences, especially because studies of wild birds have shown similar trends47,48. Thus, we offer our data as a starting point for additional research. Taken together, the analyses by sex provide interesting points of comparison to other vocal learning animals. Our combined analyses suggest that sex differences in vocal learning are vastly smaller and less common among parrots than they are among oscine passerines and hummingbirds45,49,50. Sex-based patterns of vocal learning in parrots appear more similar to those of vocal learning mammals than to those of other vocal learning birds51. Overall, parrots and songbirds present excellent comparative study systems for all aspects of sex differences in song learning, from the mechanistic to the functional17,51.

Vocal learning variation by social context

Many parrot vocalizations function in social organization for individuals within flocks, and the ability to learn from conspecifics is essential to parrot familial and social integration12,15,52. Although our study specifically examined vocal learning of human sounds, we thought it possible that the presence of other parrots would increase mimicry rates if parrots learned human vocalizations from their parrot companions. Anecdotal stories of parrots teaching words to other parrots abound53, and studies of grey parrot cognition show that vocal modeling by multiple tutors can lead to better learning of human words54. Most existing results, however, are based on human tutoring, with controlled studies of parrot-parrot word transmission lacking. Here we tested whether social interactions with other parrots correlated with more vocal learning of human sounds. Our data gave no evidence that parrot-parrot social interactions drive human vocal mimicry. This was true across the full sample (controlling for species identity), and for our best sampled species, grey parrots. Although companion parrots are known to learn from conspecifics, that learning does not appear to shape repertoire sizes53. Open questions remain about whether signal complexity, repertoire size, or aspects of vocal learning covary with social complexity at a larger scale among parrots55. Follow up studies should address these questions using phylogenetically-controlled methods56.


Source: Ecology - nature.com

Comparison of the effects of litter decomposition process on soil erosion under simulated rainfall

World leaders must step up to put biodiversity deal on path to success