in

A trait database and updated checklist for European subterranean spiders

  • Zanne, A. E. et al. Fungal functional ecology: bringing a trait-based approach to plant-associated fungi. Biol. Rev. 95, 409–433 (2020).

    PubMed 
    Article 

    Google Scholar 

  • Põlme, S. et al. FungalTraits: a user-friendly traits database of fungi and fungus-like stramenopiles. Fungal Divers. 105, 1–16 (2020).

    Article 

    Google Scholar 

  • Fraser, L. H. TRY—A plant trait database of databases. Glob. Chang. Biol. 26, 189–190 (2020).

    ADS 
    PubMed 
    Article 

    Google Scholar 

  • Kattge, J. et al. TRY plant trait database – enhanced coverage and open access. Glob. Chang. Biol. 26, 119–188 (2020).

    ADS 
    PubMed 
    Article 

    Google Scholar 

  • Oliveira, B. F., São-Pedro, V. A., Santos-Barrera, G., Penone, C. & Costa, G. C. AmphiBIO, a global database for amphibian ecological traits. Sci. Data 4, 170123 (2017).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Lecocq, T. et al. TOFF, a database of traits of fish to promote advances in fish aquaculture. Sci. Data 6, 301 (2019).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Jones, K. E. et al. PanTHERIA: a species-level database of life history, ecology, and geography of extant and recently extinct mammals. Ecology 90, 2648 (2009).

    Article 

    Google Scholar 

  • Parr, C. L. et al. GlobalAnts: a new database on the geography of ant traits (Hymenoptera: Formicidae). Insect Conserv. Divers. 10, 5–20 (2017).

    Article 

    Google Scholar 

  • Homburg, K., Homburg, N., Schäfer, F., Schuldt, A. & Assmann, T. Carabids.org – a dynamic online database of ground beetle species traits (Coleoptera, Carabidae). Insect Conserv. Divers. 7, 195–205 (2014).

    Article 

    Google Scholar 

  • Lowe, E. C. et al. Towards establishment of a centralized spider traits database. J. Arachnol. 48 (2020).

  • Tobias, J. A. et al. AVONET: morphological, ecological and geographical data for all birds. Ecol. Lett. 25, 581–597 (2022).

    PubMed 
    Article 

    Google Scholar 

  • Mammola, S., Carmona, C. P., Guillerme, T. & Cardoso, P. Concepts and applications in functional diversity. Funct. Ecol. 35, 1869–1885 (2021).

    Article 

    Google Scholar 

  • de Bello, F. et al. Handbook of trait-based ecology: from theory to R tools. (Cambridge University Press, 2021).

  • Edwards, K. F. et al. Evolutionarily stable communities: a framework for understanding the role of trait evolution in the maintenance of diversity. Ecol. Lett. 21, 1853–1868 (2018).

    PubMed 
    Article 

    Google Scholar 

  • McGill, B. J., Enquist, B. J., Weiher, E. & Westoby, M. Rebuilding community ecology from functional traits. Trends Ecol. Evol. 21, 178–185 (2006).

    PubMed 
    Article 

    Google Scholar 

  • Violle, C., Reich, P. B., Pacala, S. W., Enquist, B. J. & Kattge, J. The emergence and promise of functional biogeography. Proc. Natl. Acad. Sci. 111, 13690–13696 (2014).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Kosman, E., Burgio, K. R., Presley, S. J., Willig, M. R. & Scheiner, S. M. Conservation prioritization based on trait‐based metrics illustrated with global parrot distributions. Divers. Distrib. 25, 1156–1165 (2019).

    Article 

    Google Scholar 

  • Cadotte, M. W., Carscadden, K. & Mirotchnick, N. Beyond species: functional diversity and the maintenance of ecological processes and services. J. Appl. Ecol. 48, 1079–1087 (2011).

    Article 

    Google Scholar 

  • de Bello, F. et al. Towards an assessment of multiple ecosystem processes and services via functional traits. Biodivers. Conserv. 19, 2873–2893 (2010).

    Article 

    Google Scholar 

  • Ficetola, G. F., Canedoli, C. & Stoch, F. The Racovitzan impediment and the hidden biodiversity of unexplored environments. Conserv. Biol. 33, 214–216 (2019).

    PubMed 
    Article 

    Google Scholar 

  • Mammola, S. et al. Collecting eco-evolutionary data in the dark: Impediments to subterranean research and how to overcome them. Ecol. Evol. 11, 5911–5926 (2021).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Mammola, S. et al. Fundamental research questions in subterranean biology. Biol. Rev. 95, 1855–1872 (2020).

    PubMed 
    Article 

    Google Scholar 

  • Cardoso, P. Diversity and community assembly patterns of epigean vs. troglobiont spiders in the Iberian Peninsula. Int. J. Speleol. 41, 83–94 (2012).

    Article 

    Google Scholar 

  • Fernandes, C. S., Batalha, M. A. & Bichuette, M. E. Does the cave environment reduce functional diversity? PLoS One 11, e0151958 (2016).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • Saccò, M. et al. New light in the dark – a proposed multidisciplinary framework for studying functional ecology of groundwater fauna. Sci. Total Environ. 662, 963–977 (2019).

    ADS 
    PubMed 
    Article 
    CAS 

    Google Scholar 

  • Mammola, S. & Isaia, M. Spiders in caves. Proceedings of the Royal Society B: Biological Sciences 284, 20170193 (2017).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Parimuchová, A. et al. The food web in a subterranean ecosystem is driven by intraguild predation. Sci. Rep. 11, 4994 (2021).

    ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • Bloom, T. et al. Discovery of two new species of eyeless spiders within a single Hispaniola cave. J. Arachnol. 42, 148–154 (2014).

    Article 

    Google Scholar 

  • Mammola, S., Cardoso, P., Ribera, C., Pavlek, M. & Isaia, M. A synthesis on cave-dwelling spiders in Europe. J. Zool. Syst. Evol. Res. 56, 301–316 (2018).

    Article 

    Google Scholar 

  • Mammola, S. et al. Continental data on cave-dwelling spider communities across Europe (Arachnida: Araneae). Biodivers. Data J. 7, e38492 (2019).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Milano, F. et al. Spider conservation in Europe: a review. Biol. Conserv. 256, 109020 (2021).

    Article 

    Google Scholar 

  • Pekár, S. et al. The World Spider Trait database (WST): a centralised global open repository for curated data on spider traits. Database 2021, baab064 (2021).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Ledesma, E., Jiménez-Valverde, A., de Castro, A., Aguado-Aranda, P. & Ortuño, V. M. The study of hidden habitats sheds light on poorly known taxa: spiders of the Mesovoid Shallow Substratum. Zookeys 841, 39–59 (2019).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • World Spider Catalog. World Spider Catalog. Version 23.0. Natural History Museum Bern 10.24436/2 (2022).

  • Nentwig, W. et al. Araneae – Spider of Europe. 10.24436/1 (2021).

  • Malumbres-Olarte, J. et al. Habitat filtering and inferred dispersal ability condition across-scale species turnover and rarity in Macaronesian island spider assemblages. J. Biogeogr. 48, 3131–3144 (2021).

    Article 

    Google Scholar 

  • Nentwig, W., Gloor, D. & Kropf, C. Spider taxonomists catch data on web. Nature 528, 479 (2015).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Mammola, S. et al. Environmental filtering and convergent evolution determine the ecological specialization of subterranean spiders. Funct. Ecol. 34, 1064–1077 (2020).

    Article 

    Google Scholar 

  • Mammola, S. et al. Ecological speciation in darkness? Spatial niche partitioning in sibling subterranean spiders (Araneae: Linyphiidae: Troglohyphantes). Invertebr. Syst. 32, 1069–1082 (2018).

    Article 

    Google Scholar 

  • Huber, B. A. Cave-dwelling pholcid spiders (Araneae, Pholcidae): A review. Subterr. Biol. 26, 1–18 (2018).

    ADS 
    Article 

    Google Scholar 

  • Arnedo, M. A., Oromí, P., Múrria, C., Macías-Hernández, N. & Ribera, C. The dark side of an island radiation: systematics and evolution of troglobitic spiders of the genus Dysdera Latreille (Araneae:Dysderidae) in the Canary Islands. Invertebr. Syst. 21, 623–660 (2007).

    Article 

    Google Scholar 

  • Ubick, D., Paquin, P., Cushing, P. E. & Duperre, N. Spiders of North America: An Identification Manual. (Amer Arachnological Society, 2007).

  • Cardoso, P., Pekár, S., Jocqué, R. & Coddington, J. A. Global patterns of guild composition and functional diversity of spiders. PLoS One 6, e21710 (2011).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Smithers, P. The early life history and dispersal of the cave spider Meta menardi (Latreille, 1804) (Araneae: Tetragnathidae). Bull. Br. arachnol. Soc 13, 213–216 (2005).

    Google Scholar 

  • Mammola, S., Hormiga, G., Arnedo, M. A. & Isaia, M. Unexpected diversity in the relictual European spiders of the genus Pimoa (Araneae:Pimoidae). Invertebr. Syst. 30, 566–587 (2016).

    Article 

    Google Scholar 

  • Sket, B. Can we agree on an ecological classification of subterranean animals? J. Nat. Hist. 42, 1549–1563 (2008).

    Article 

    Google Scholar 

  • Trajano, E. & de Carvalho, M. R. Towards a biologically meaningful classification of subterranean organisms: A critical analysis of the schiner-racovitza system from a historical perspective, difficulties of its application and implications for conservation. Subterr. Biol. 22, 1–26 (2017).

    Article 

    Google Scholar 

  • Martínez, A. & Mammola, S. Specialized terminology reduces the number of citations to scientific papers. Proc. R. Soc. B Biol. Sci. 288, 20202581 (2021).

    Article 

    Google Scholar 

  • Mammola, S. Finding answers in the dark: caves as models in ecology fifty years after Poulson and White. Ecography 42, 1331–1351 (2019).

    Article 

    Google Scholar 

  • Mammola, S. et al. Quantifying troglomorphism in hyperspace. Arpha Conf. Abstr. 5, e82941 (2022).

  • Wickham, H. ggplot2: Elegant Graphics for Data Analysis. (Springer-Verlag, 2016).

  • Palacio, F. X. et al. A protocol for reproducible functional diversity analyses. EcoEvoRxiv https://doi.org/10.32942/osf.io/yt9sb (2022).

    Article 

    Google Scholar 

  • Gower, J. C. A General Coefficient of Similarity and Some of Its Properties. Biometrics 27, 857–871 (1971).

    Article 

    Google Scholar 

  • de Bello, F., Botta-Dukát, Z., Lepš, J. & Fibich, P. Towards a more balanced combination of multiple traits when computing functional differences between species. Methods Ecol. Evol. 12, 443–448 (2021).

    Article 

    Google Scholar 

  • Paradis, E. & Schliep, K. Ape 5.0: An environment for modern phylogenetics and evolutionary analyses in R. Bioinformatics 35, 526–528 (2019).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Oksanen, J. et al. R Package vegan: community ecology package. R package version 2.5-3 (2018).

  • R Core Team. R: A language and environment for statistical computing. (2021).

  • Mammola, S. A trait database for European subterranean spiders, Figshare, https://doi.org/10.6084/m9.figshare.16574255 (2022).

  • Cardoso, P. & Pekar, S. arakno – An R package for effective spider nomenclature, distribution, and trait data retrieval from online resources. J. Arachnol. 50, 30–32 (2022).

    Article 

    Google Scholar 

  • Johnson, T. F., Isaac, N. J. B., Paviolo, A. & González-Suárez, M. Handling missing values in trait data. Glob. Ecol. Biogeogr. 30, 51–62 (2021).

    Article 

    Google Scholar 

  • Podani, J., Kalapos, T., Barta, B. & Schmera, D. Principal component analysis of incomplete data – A simple solution to an old problem. Ecol. Inform. 61, 101235 (2021).

    Article 

    Google Scholar 

  • Cardoso, P., Mammola, S., Rigal, F. & Carvalho, J. C. BAT: Biodiversity Assessment Tools. R package version 2.6.0 (2021).

  • Cardoso, P., Rigal, F. & Carvalho, J. C. BAT – Biodiversity Assessment Tools, an R package for the measurement and estimation of alpha and beta taxon, phylogenetic and functional diversity. Methods Ecol. Evol. 6, 232–236 (2015).

    Article 

    Google Scholar 

  • De Bello, F. et al. Quantifying the relevance of intraspecific trait variability for functional diversity. Methods Ecol. Evol. 2, 163–174 (2011).

    Article 

    Google Scholar 

  • Violle, C. et al. The return of the variance: intraspecific variability in community ecology. Trends Ecol. Evol. 27, 244–252 (2012).

    PubMed 
    Article 

    Google Scholar 

  • Gentile, G., Bonelli, S. & Riva, F. Evaluating intraspecific variation in insect trait analysis. Ecol. Entomol. 46, 11–18 (2020).

    Article 

    Google Scholar 

  • Wong, M. K. L. & Carmona, C. P. Including intraspecific trait variability to avoid distortion of functional diversity and ecological inference: Lessons from natural assemblages. Methods Ecol. Evol. 12, 946–957 (2021).

    Article 

    Google Scholar 

  • Mammola, S., Piano, E., Malard, F., Vernon, P. & Isaia, M. Extending Janzen’s hypothesis to temperate regions: a test using subterranean ecosystems. Funct. Ecol. 33, 1638–1650 (2019).

    Article 

    Google Scholar 

  • Kratochvíl, J. Araignées cavernicoles des îles Dalmates. Přírodovědné práce ústavů Československé Akad. Věd v Brně 12, 1–59 (1978).

    Google Scholar 

  • Denny, M. The fallacy of the average: on the ubiquity, utility and continuing novelty of Jensen’s inequality. J. Exp. Biol. 220, 139–146 (2017).

    PubMed 
    Article 

    Google Scholar 

  • Mammola, S. et al. Cave_dwelling_spiders_Europe. Figshare https://doi.org/10.6084/m9.figshare.8224025.v1 (2019).

  • Darwin, C. On the origin of species by means of natural selection, or the preservation of favoured races in the struggle of life. (John Murray, 1859).

  • Wong, M. K. L., Guénard, B. & Lewis, O. T. Trait-based ecology of terrestrial arthropods. Biol. Rev. 94, 999–1022 (2019).

    PubMed 
    Article 

    Google Scholar 

  • Lučić, I. Interview with Boris Sket: nothing has a sense in speleobiology, without a comparison of cave animals with the ‘normal’ epigean ones. Acta Carsologica 50, 5–9 (2021).

    Article 

    Google Scholar 

  • McGill, B. J. The what, how and why of doing macroecology. Glob. Ecol. Biogeogr. 28, 6–17 (2019).

    Article 

    Google Scholar 

  • Muscarella, R. & Uriarte, M. Do community-weighted mean functional traits reflect optimal strategies? Proc. R. Soc. B Biol. Sci. 283, 20152434 (2016).

    Article 

    Google Scholar 

  • Petchey, O. L. & Gaston, K. J. Functional diversity (FD), species richness and community composition. Ecol. Lett. 5, 402–411 (2002).

    Article 

    Google Scholar 

  • Mammola, S. & Cardoso, P. Functional diversity metrics using kernel density n-dimensional hypervolumes. Methods Ecol. Evol. 11, 986–995 (2020).

    Article 

    Google Scholar 

  • Mammola, S. et al. Local- versus broad-scale environmental drivers of continental β-diversity patterns in subterranean spider communities across Europe. Proc. R. Soc. B Biol. Sci. 286, 20191579 (2019).

    Article 

    Google Scholar 

  • Graco-Roza, C. et al. Distance decay 2.0 – a global synthesis of taxonomic and functional turnover in ecological communities. Glob. Ecol. Biogeogr, in press (available at https://doi.org/10.1101/2021.03.17.435827) (2022).

  • Gallagher, R. V. et al. A guide to using species trait data in conservation. One Earth 4, 927–936 (2021).

    ADS 
    Article 

    Google Scholar 

  • Chichorro, F., Juslén, A. & Cardoso, P. A review of the relation between species traits and extinction risk. Biol. Conserv. 237, 220–229 (2019).

    Article 

    Google Scholar 

  • Chichorro, F. et al. Species traits predict extinction risk across the Tree of Life. bioRxiv 2020.07.01.183053 (2020).

  • Violle, C. et al. Functional rarity: the ecology of outliers. Trends Ecol. Evol. 32, 356–367 (2017).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Carmona, C. P. et al. Erosion of global functional diversity across the tree of life. Sci. Adv. 7, eabf2675 (2021).

    ADS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Loreau, M. et al. Biodiversity as insurance: from concept to measurement and application. Biol. Rev. 96, 2333–2354 (2021).

    PubMed 
    Article 

    Google Scholar 

  • Sánchez-Fernández, D., Galassi, D. M. P., Wynne, J. J., Cardoso, P. & Mammola, S. Don’t forget subterranean ecosystems in climate change agendas. Nat. Clim. Chang. 11, 458–459 (2021).

    ADS 
    Article 

    Google Scholar 

  • Borges, P. A. V. et al. Volcanic caves: Priorities for conserving the Azorean endemic troglobiont species. Int. J. Speleol. 41, 101–112 (2012).

    Article 

    Google Scholar 

  • Rabelo, L. M., Souza-Silva, M. & Ferreira, R. L. Priority caves for biodiversity conservation in a key karst area of Brazil: comparing the applicability of cave conservation indices. Biodivers. Conserv. 27, 2097–2129 (2018).

    Article 

    Google Scholar 

  • Nitzu, E. et al. Assessing preservation priorities of caves and karst areas using the frequency of endemic cave-dwelling species. Int. J. Speleol. 47, 43–52 (2018).

    Article 

    Google Scholar 

  • Pipan, T., Deharveng, L. & Culver, D. C. Hotspots of subterranean biodiversity. Diversity 12, 209 (2020).

    Article 

    Google Scholar 

  • Fattorini, S., Fiasca, B., Di Lorenzo, T., Di Cicco, M. & Galassi, D. M. P. A new protocol for assessing the conservation priority of groundwater-dependent ecosystems. Aquat. Conserv. Mar. Freshw. Ecosyst. 30, 1483–1504 (2020).

    Article 

    Google Scholar 

  • Iannella, M. et al. Getting the ‘most out of the hotspot’ for practical conservation of groundwater biodiversity. Glob. Ecol. Conserv. e01844 (2021).

  • Mazel, F. et al. Prioritizing phylogenetic diversity captures functional diversity unreliably. Nat. Commun. 9, 2888 (2018).

    ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • Cadotte, M. W. & Tucker, C. M. Difficult decisions: Strategies for conservation prioritization when taxonomic, phylogenetic and functional diversity are not spatially congruent. Biol. Conserv. 225, 128–133 (2018).

    Article 

    Google Scholar 

  • Hanson, J. O. et al. Global conservation of species’ niches. Nature 580, 232–234 (2020).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Pollock, L. J. et al. Protecting biodiversity (in all its complexity): new models and methods. Trends Ecol. Evol. 35, 1119–1128 (2020).

    PubMed 
    Article 

    Google Scholar 

  • Mammola, S. et al. Scientists’ warning on the conservation of subterranean ecosystems. Bioscience 69, 641–650 (2019).

    Article 

    Google Scholar 

  • Wynne, J. J. et al. A conservation roadmap for the subterranean biome. Conserv. Lett. 14, e12834 (2021).

    Article 

    Google Scholar 

  • Mammola, S. et al. Towards evidence-based conservation of subterranean ecosystems. Biol. Rev., early view at https://doi.org/10.1111/brv.12851 (2022).

  • Culver, D. C. & Pipan, T. The biology of caves and other subterranean habitats. (Oxford University Press, USA, 2014).

  • Culver, D. C. & Pipan, T. Shallow Subterranean Habitats: Ecology, Evolution, and Convervation. (Oxford University Press, USA, 2014).

  • Sobral, M. All traits are functional: an evolutionary viewpoint. Trends Plant Sci. 26, 674–676 (2021).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Pipan, T. & Culver, D. C. The unity and diversity of the subterranean realm with respect to invertebrate body size. J. Cave Karst Stud. 79, 1–9 (2017).

    Article 

    Google Scholar 

  • Elgar, M. A., Ghaffar, N. & Read, A. F. Sexual dimorphism in leg length among orb-weaving spiders: a possible role for sexual cannibalism. J. Zool. 222, 455–470 (1990).

    Article 

    Google Scholar 

  • Deeleman-Reinhold, C. L. Revision of the cave-dwelling and related spiders of the genus Troglohyphantes Joseph (Linyphiidae), with special reference to the Yugoslav species. Opera Acad. Sci. Artium Slov. 23 (1978).

  • Isaia, M. & Pantini, P. New data on the spider genus Troglohyphantes (Araneae, Linyphiidae) in the Italian Alps, with the description of a new species and a new synonymy. Zootaxa 2690, 1–18 (2010).

    Article 

    Google Scholar 

  • Hagstrum, D. W. Carapace width as a tool for evaluating the rate of development of spiders in the laboratory and the field. Ann. Entomol. Soc. Am. 64, 757–760 (1971).

    Article 

    Google Scholar 

  • Pavlek, M. & Mammola, S. Niche-based processes explaining the distributions of closely related subterranean spiders. J. Biogeogr. 48, 118–133 (2020).

    Article 

    Google Scholar 

  • Mammola, S. Modelling the future spread of native and alien congeneric species in subterranean habitats – The case of meta cave-dwelling spiders in Great Britain. Int. J. Speleol. 46, 427–437 (2017).

    Article 

    Google Scholar 

  • Novak, T. et al. Niche partitioning in orbweaving spiders Meta menardi and Metellina merianae (Tetragnathidae). Acta Oecologica 36, 522–529 (2010).

    ADS 
    Article 

    Google Scholar 

  • Lunghi, E. Occurrence of the Black lace-weaver spider, Amaurobius ferox, in caves. Acta Carsologica 49, 119–124 (2020).

    Article 

    Google Scholar 

  • Isaia, M. & Chiarle, A. Taxonomic notes on Cybaeus vignai Brignoli, 1977 (Araneae, Cybaeidae) and Dysdera cribrata Simon, 1882 (Araneae, Dysderidae) from the Italian Maritime Alps. Zoosystema 37, 45–56 (2015).

    Article 

    Google Scholar 

  • Ledford, J. et al. Phylogenomics and biogeography of leptonetid spiders (Araneae: Leptonetidae). Invertebr. Syst. 35, 332–349 (2021).

    Google Scholar 

  • Isaia, M., Mammola, S., Mazzuca, P., Arnedo, M. A. & Pantini, P. Advances in the systematics of the spider genus Troglohyphantes (Araneae, Linyphiidae). Syst. Biodivers. 15, 307–326 (2017).

    Article 

    Google Scholar 

  • Hajer, J. & Řeháková, D. Spinning activity of the spider Trogloneta granulum (Araneae, Mysmenidae): web, cocoon, cocoon handling behaviour, draglines and attachment discs. Zoology 106, 223–231 (2003).

    PubMed 
    Article 

    Google Scholar 

  • Huber, B. A., Pavlek, M. & Komnenov, M. Revision of the spider genus Stygopholcus (Araneae, Pholcidae), endemic to the Balkan Peninsula. Eur. J. Taxon. 752, 1–60 (2021).

    Google Scholar 

  • Huber, B. A. Revision of the spider genus Hoplopholcus Kulczyński (Araneae, Pholcidae). Zootaxa 4726, 1–94 (2020).

    Article 

    Google Scholar 

  • Cardoso, P. & Scharff, N. First record of the spider family symphytognathidae in Europe and description of Anapistula ataecina sp. n. (araneae). Zootaxa 2246, 45–57 (2009).

    Article 

    Google Scholar 

  • Wang, C., Ribera, C. & Li, S. On the identity of the type species of the genus Telema (Araneae, Telemidae). Zookeys 251, 11–19 (2012).

    Article 

    Google Scholar 

  • Hesselberg, T., Simonsen, D. & Juan, C. Do cave orb spiders show unique behavioural adaptations to subterranean life? A review of the evidence. Behaviour 1–28 (2019).


  • Source: Ecology - nature.com

    Lama Willa Baker challenges MIT audience to look beyond technology to solve the climate crises

    Whales from space dataset, an annotated satellite image dataset of whales for training machine learning models