in

A tripartite model system for Southern Ocean diatom-bacterial interactions reveals the coexistence of competing symbiotic strategies

  • Saba GK, Fraser WR, Saba VS, Iannuzzi RA, Coleman KE, Doney SC, et al. Winter and spring controls on the summer food web of the coastal West Antarctic Peninsula. Nat Commun. 2014;5:4318.

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Behrenfeld MJ, Randerson JT, McClain CR, Feldman GC, Los SO, Tucker CJ, et al. Biospheric primary production during an ENSO transition. Science. 2001;291:2594–7.

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Amin SA, Parker MS, Armbrust EV. Interactions between diatoms and bacteria. Microbiol Mol Biol Rev. 2012;76:667–84.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Cho BC, Azam F. Major role of bacteria in biogeochemical fluxes in the ocean’s interior. Nature. 1988;332:441–3.

    CAS 
    Article 

    Google Scholar 

  • Amin S, Hmelo L, Van Tol H, Durham B, Carlson L, Heal K, et al. Interaction and signalling between a cosmopolitan phytoplankton and associated bacteria. Nature. 2015;522:98–101.

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Durham BP, Sharma S, Luo H, Smith CB, Amin SA, Bender SJ, et al. Cryptic carbon and sulfur cycling between surface ocean plankton. Proc Natl Acad Sci. 2015;112:453–7.

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Mühlenbruch M, Grossart HP, Eigemann F, Voss M. Mini‐review: Phytoplankton‐derived polysaccharides in the marine environment and their interactions with heterotrophic bacteria. Environ Microbiol. 2018;20:2671–85.

    PubMed 
    Article 

    Google Scholar 

  • Seymour JR, Amin SA, Raina J-B, Stocker R. Zooming in on the phycosphere: the ecological interface for phytoplankton–bacteria relationships. Nat Microbiol. 2017;2:1–12.

    Article 

    Google Scholar 

  • Azam F, Fenchel T, Field JG, Gray JS, Meyer-Reil L-A, Thingstad F. The ecological role of water-column microbes in the sea. Marine ecology progress series. 1983;10:257–63.

  • Ratnarajah L, Blain S, Boyd PW, Fourquez M, Obernosterer I, Tagliabue A. Resource colimitation drives competition between phytoplankton and bacteria in the Southern Ocean. Geophys Res Lett. 2021;48:e2020GL088369.

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Oulhen N, Schulz BJ, Carrier TJ. English translation of Heinrich Anton de Bary’s 1878 speech, ‘Die Erscheinung der Symbiose’ (‘De la symbiose’). Symbiosis. 2016;69:131–9.

    Article 

    Google Scholar 

  • Cooper MB, Smith AG. Exploring mutualistic interactions between microalgae and bacteria in the omics age. Curr Opin Plant Biol. 2015;26:147–53.

    PubMed 
    Article 

    Google Scholar 

  • Croft MT, Lawrence AD, Raux-Deery E, Warren MJ, Smith AG. Algae acquire vitamin B12 through a symbiotic relationship with bacteria. Nature. 2005;438:90–3.

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Cole JJ. Interactions between bacteria and algae in aquatic ecosystems. Ann Rev Ecol Syst. 1982;13:291–314.

    Article 

    Google Scholar 

  • Durham B. Deciphering metabolic currencies that support marine microbial networks. mSystems. 2021;6:e00763-21.

  • Bell W, Mitchell R. Chemotactic and growth responses of marine bacteria to algal extracellular products. Biol Bull. 1972;143:265–77.

    Article 

    Google Scholar 

  • Baker LJ, Kemp PF. Exploring bacteria–diatom associations using single-cell whole genome amplification. Aquat Microb Ecol. 2014;72:73–88.

    Article 

    Google Scholar 

  • Graff JR, Rines JE, Donaghay PL. Bacterial attachment to phytoplankton in the pelagic marine environment. Mar Ecol Prog Ser. 2011;441:15–24.

    Article 

    Google Scholar 

  • Baker LJ, Alegado RA, Kemp PF. Response of diatom-associated bacteria to host growth state, nutrient concentrations, and viral host infection in a model system. Environ Microbiol Rep. 2016;8:917–27.

    PubMed 
    Article 

    Google Scholar 

  • Shibl AA, Isaac A, Ochsenkühn MA, Cárdenas A, Fei C, Behringer G, et al. Diatom modulation of select bacteria through use of two unique secondary metabolites. Proc Natl Acad Sci. 2020;117:27445–55.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Leinweber K, Kroth PG. Capsules of the diatom Achnanthidium minutissimum arise from fibrillar precursors and foster attachment of bacteria. PeerJ. 2015;3:e858.

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Guo S, Stevens CA, Vance TDR, Olijve LLC, Graham LA, Campbell RL, et al. Structure of a 1.5-MDa adhesin that binds its Antarctic bacterium to diatoms and ice. Sci Adv. 2017;3:e1701440.

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Rao D, Webb JS, Kjelleberg S. Microbial colonization and competition on the Marine Alga Ulva australis. Appl Environ Microbiol. 2006;72:5547–55.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Zhou J, Chen G-F, Ying K-Z, Jin H, Song J-T, Cai Z-H, et al. Phycosphere microbial succession patterns and assembly mechanisms in a marine Dinoflagellate bloom. Appl Environ Microbiol. 2019;85:e00349–19.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Seyedsayamdost MR, Case RJ, Kolter R, Clardy J. The Jekyll-and-Hyde chemistry of Phaeobacter gallaeciensis. Nat Chem. 2011;3:331–5.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Frölicher TL, Sarmiento JL, Paynter DJ, Dunne JP, Krasting JP, Winton M. Dominance of the Southern Ocean in anthropogenic carbon and heat uptake in CMIP5 models. J Clim. 2015;28:862–86.

    Article 

    Google Scholar 

  • Strzepek RF, Hunter KA, Frew RD, Harrison PJ, Boyd PW. Iron‐light interactions differ in Southern Ocean phytoplankton. Limnol Oceanogr. 2012;57:1182–200.

    CAS 
    Article 

    Google Scholar 

  • Andrew SM, Strzepek RF, M Whitney S, Chow WS, Ellwood MJ. Divergent physiological and molecular responses of light‐and iron‐limited Southern Ocean phytoplankton. Limnol Oceanogr Lett. 2022;7:150–8.

    CAS 
    Article 

    Google Scholar 

  • Bertrand EM, Saito MA, Rose JM, Riesselman CR, Lohan MC, Noble AE, et al. Vitamin B12 and iron colimitation of phytoplankton growth in the Ross Sea. Limnol Oceanogr. 2007;52:1079–93.

    CAS 
    Article 

    Google Scholar 

  • Bertrand EM, McCrow JP, Moustafa A, Zheng H, McQuaid JB, Delmont TO, et al. Phytoplankton–bacterial interactions mediate micronutrient colimitation at the coastal Antarctic sea ice edge. Proc Natl Acad Sci. 2015;112:9938–43.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Bates SSB, Hubbard KA, Lundholm N, Montresor M, Leaw CP. Pseudonitzschia, Nitzschia, and domoic acid: new research since 2011. Harmful Algae. 2018;79:3–43.

    PubMed 
    Article 

    Google Scholar 

  • Almandoz GO, Ferreyra GA, Schloss IR, Dogliotti AI, Rupolo V, Paparazzo FE, et al. Distribution and ecology of Pseudonitzschia species (Bacillariophyceae) in surface waters of the Weddell Sea (Antarctica). Polar Biol. 2008;31:429–42.

    Article 

    Google Scholar 

  • Jabre LJ, Allen AE, McCain JSP, McCrow JP, Tenenbaum N, Spackeen JL, et al. Molecular underpinnings and biogeochemical consequences of enhanced diatom growth in a warming Southern Ocean. Proc Natl Acad Sci. 2021;118:e2107238118.

  • Malviya S, Scalco E, Audic S, Vincent F, Veluchamy A, Poulain J, et al. Insights into global diatom distribution and diversity in the world’s ocean. Proc Natl Acad Sci. 2016;113:E1516–25.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Moreno CM, Lin Y, Davies S, Monbureau E, Cassar N, Marchetti A. Examination of gene repertoires and physiological responses to iron and light limitation in Southern Ocean diatoms. Polar Biol. 2018;41:679–96.

    Article 

    Google Scholar 

  • Ellis KA, Cohen NR, Moreno C, Marchetti A. Cobalamin-independent methionine synthase distribution and influence on vitamin B12 growth requirements in marine diatoms. Protist. 2017;168:32–47.

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Price NM, Harrison GI, Hering JG, Hudson RJ, Nirel PM, Palenik B, et al. Preparation and chemistry of the artificial algal culture medium Aquil. Biol Oceanogr. 1989;6:443–61.

    Article 

    Google Scholar 

  • Hubbard KA, Rocap G, Armbrust EV. Inter- and intraspecific community structure within the diatom genus Pseudo-nitzschia (Bacillariophyceae). J Phycol. 2008;44:637–49.

    CAS 
    Article 

    Google Scholar 

  • Madeira F, Park YM, Lee J, Buso N, Gur T, Madhusoodanan N, et al. The EMBL-EBI search and sequence analysis tools APIs in 2019. Nucleic Acids Res. 2019;47:W636–41.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ. Basic local alignment search tool. J Mol Biol. 1990;215:403–10.

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Brand LE, Guillard RR, Murphy LS. A method for the rapid and precise determination of acclimated phytoplankton reproduction rates. J Plankton Res. 1981;3:193–201.

    Article 

    Google Scholar 

  • Waterhouse AM, Procter JB, Martin DM, Clamp M, Barton GJ. Jalview Version 2—a multiple sequence alignment editor and analysis workbench. Bioinformatics. 2009;25:1189–91.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Nguyen L-T, Schmidt HA, Von Haeseler A, Minh BQ. IQ-TREE: a fast and effective stochastic algorithm for estimating maximum-likelihood phylogenies. Mol Biol Evol. 2015;32:268–74.

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Kalyaanamoorthy S, Minh BQ, Wong TK, Von Haeseler A, Jermiin LS. ModelFinder: fast model selection for accurate phylogenetic estimates. Nat Methods. 2017;14:587–9.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Trifinopoulos J, Nguyen L-T, von Haeseler A, Minh BQ. W-IQ-TREE: a fast online phylogenetic tool for maximum likelihood analysis. Nucleic Acids Res. 2016;44:W232–5.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Hoang DT, Chernomor O, Von Haeseler A, Minh BQ, Vinh LS. UFBoot2: improving the ultrafast bootstrap approximation. Mol Biol Evol. 2018;35:518–22.

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Letunic I, Bork P. Interactive Tree Of Life (iTOL) v4: recent updates and new developments. Nucleic Acids Res. 2019;47:W256–9.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Bankevich A, Nurk S, Antipov D, Gurevich AA, Dvorkin M, Kulikov AS, et al. SPAdes: a new genome assembly algorithm and its applications to single-cell sequencing. J Comput Biol. 2012;19:455–77.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Rodriguez-R LM, Gunturu S, Harvey WT, Rosselló-Mora R, Tiedje JM, Cole JR, et al. The Microbial Genomes Atlas (MiGA) webserver: taxonomic and gene diversity analysis of Archaea and Bacteria at the whole genome level. Nucl Acids Res. 2018;46:W282–8.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Jain C, Rodriguez-R LM, Phillippy AM, Konstantinidis KT, Aluru S. High throughput ANI analysis of 90K prokaryotic genomes reveals clear species boundaries. Nat Commun. 2018;9:1–8.

    Article 

    Google Scholar 

  • Seemann T. Prokka: rapid prokaryotic genome annotation. Bioinformatics. 2014;30:2068–9.

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Noble RT, Fuhrman JA. Use of SYBR Green I for rapid epifluorescence counts of marine viruses and bacteria. Aquat Microb Ecol. 1998;14:113–8.

    Article 

    Google Scholar 

  • Alcamán-Arias ME, Fuentes-Alburquenque S, Vergara-Barros P, Cifuentes-Anticevic J, Verdugo J, Polz M, et al. Coastal bacterial community response to glacier melting in the Western Antarctic Peninsula. Microorganisms. 2021;9:88.

    PubMed Central 
    Article 

    Google Scholar 

  • Bowman JP, Gosink JJ, McCAMMON SA, Lewis TE, Nichols DS, Nichols PD, et al. Colwellia demingiae sp. nov., Colwellia hornerae sp. nov., Colwellia rossensis sp. nov. and Colwellia psychrotropica sp. nov.: psychrophilic Antarctic species with the ability to synthesize docosahexaenoic acid (22: ω63). Int J Syst Evol Microbiol. 1998;48:1171–80.

    CAS 

    Google Scholar 

  • Reisch CR, Moran MA, Whitman WB. Bacterial catabolism of dimethylsulfoniopropionate (DMSP). Front Microbiol. 2011;2:172.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Diaz J, Ingall E, Benitez-Nelson C, Paterson D, de Jonge MD, McNulty I, et al. Marine polyphosphate: a key player in geologic phosphorus sequestration. Science. 2008;320:652–5.

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Nichols CM, Bowman JP, Guezennec J. Olleya marilimosa gen. nov., sp. nov., an exopolysaccharide-producing marine bacterium from the family Flavobacteriaceae, isolated from the Southern Ocean. Int J Syst Evol Microbiol. 2005;55:1557–61.

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • von Scheibner M, Sommer U, Jürgens K. Tight coupling of Glaciecola spp. and diatoms during cold-water Phytoplankton spring blooms. Front Microbiol. 2017;8:27.

  • Holmstrom C, Kjelleberg S. Marine Pseudoalteromonas species are associated with higher organisms and produce biologically active extracellular agents. FEMS Microbiol Ecol. 1999;30:285–93.

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Methe BA, Nelson KE, Deming JW, Momen B, Melamud E, Zhang X, et al. The psychrophilic lifestyle as revealed by the genome sequence of Colwellia psychrerythraea 34H through genomic and proteomic analyses. Proc Natl Acad Sci. 2005;102:10913–8.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Kirchman DL. The ecology of Cytophaga–Flavobacteria in aquatic environments. FEMS Microbiol Ecol. 2002;39:91–100.

    CAS 
    PubMed 

    Google Scholar 

  • Hong Z, Lai Q, Luo Q, Jiang S, Zhu R, Liang J, et al. Sulfitobacter pseudonitzschiae sp. nov., isolated from the toxic marine diatom Pseudo-nitzschia multiseries. Int J Syst Evol Microbiol. 2015;65:95–100.

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Brussaard CPD, Riegman R. Influence of bacteria on phytoplankton cell mortality with phosphorus or nitrogen as the algal-growth-limiting nutrient. Aqua Microb Ecol. 1998;14:271–80.

    Article 

    Google Scholar 

  • Cohen NR, A. Ellis K, Burns WG, Lampe RH, Schuback N, Johnson Z, et al. Iron and vitamin interactions in marine diatom isolates and natural assemblages of the Northeast Pacific Ocean. Limnol Oceanogr. 2017;62:2076–96.

    CAS 
    Article 

    Google Scholar 

  • Hunken M, Harder J, Kirst G. Epiphytic bacteria on the Antarctic ice diatom Amphiprora kufferathii Manguin cleave hydrogen peroxide produced during algal photosynthesis. Plant Biol. 2008;10:519–26.

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Gourinchas G, Etzl S, Winkler A. Bacteriophytochromes–from informative model systems of phytochrome function to powerful tools in cell biology. Curr Opin Struct Biol. 2019;57:72–83.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Gourion B, Rossignol M, Vorholt JA. A proteomic study of Methylobacterium extorquens reveals a response regulator essential for epiphytic growth. Proc Natl Acad Sci. 2006;103:13186–91.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Mukherjee S, Bassler BL. Bacterial quorum sensing in complex and dynamically changing environments. Nat Rev Microbiol. 2019;17:371–82.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Dong YH, Zhang LH. Quorum sensing and quorum-quenching enzymes. J Microbiol. 2005;43:101–9.

    CAS 
    PubMed 

    Google Scholar 

  • Núñez-Montero K, Barrientos L. Advances in Antarctic research for antimicrobial discovery: a comprehensive narrative review of bacteria from Antarctic environments as potential sources of novel antibiotic compounds against human pathogens and microorganisms of industrial importance. Antibiotics. 2018;7:90.

  • Kieft B, Li Z, Bryson S, Hettich RL, Pan C, Mayali X, et al. Phytoplankton exudates and lysates support distinct microbial consortia with specialized metabolic and ecophysiological traits. Proc Natl Acad Sci. 2021;118:e2101178118.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Maranger R, Bird DF. Viral abundance in aquatic systems: a comparison between marine and fresh waters. Mar Ecol Prog Ser. 1995;121:217–26.

    Article 

    Google Scholar 

  • Sharpe GC, Gifford SM, Septer AN. A model roseobacter, Ruegeria pomeroyi DSS-3, employs a diffusible killing mechanism to eliminate competitors. Msystems. 2020;5:e00443–20.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Cude WN, Mooney J, Tavanaei AA, Hadden MK, Frank AM, Gulvik CA, et al. Production of the antimicrobial secondary metabolite indigoidine contributes to competitive surface colonization by the marine roseobacter Phaeobacter sp. strain Y4I. Appl Environ Microbiol. 2012;78:4771–80.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Long RA, Rowley DC, Zamora E, Liu J, Bartlett DH, Azam F. Antagonistic interactions among marine bacteria impede the proliferation of Vibrio cholerae. Appl Environ Microbiol. 2005;71:8531–6.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Bruhn JB, Gram L, Belas R. Production of antibacterial compounds and biofilm formation by Roseobacter species are influenced by culture conditions. Appl Environ Microbiol. 2007;73:442–50.

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Gromek SM, Suria AM, Fullmer MS, Garcia JL, Gogarten JP, Nyholm SV, et al. Leisingera sp. JC1, a bacterial isolate from Hawaiian bobtail squid eggs, produces indigoidine and differentially inhibits vibrios. Front Microbiol. 2016;7:1342.

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Sharifah EN, Eguchi M. The phytoplankton Nannochloropsis oculata enhances the ability of Roseobacter clade bacteria to inhibit the growth of fish pathogen Vibrio anguillarum. PLoS One. 2011;6:e26756.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Kerwin AH, Gromek SM, Suria AM, Samples RM, Deoss DJ, O’Donnell K, et al. Shielding the next generation: symbiotic bacteria from a reproductive organ protect bobtail squid eggs from fungal fouling. MBio. 2019;10:e02376–19.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Tonelli M, Signori CN, Bendia A, Neiva J, Ferrero B, Pellizari V, et al. Climate projections for the southern ocean reveal impacts in the marine microbial communities following increases in sea surface temperature. Front Mar Sci. 2021;8:636226.

  • Andrew SM, Morell HT, Strzepek RF, Boyd PW, Ellwood MJ. Iron availability influences the tolerance of southern ocean phytoplankton to warming and elevated irradiance. Front Mar Sci. 2019;6:681.

  • Andrew SM, Strzepek RF, Branson O, Ellwood MJ. Ocean acidification reduces the growth of two Southern Ocean phytoplankton. Mar Ecol Prog Ser. 2022;682:51–64.

    CAS 
    Article 

    Google Scholar 

  • Blin K, Shaw S, Kloosterman AM, Charlop-Powers Z, van Weezel GP, Medema MH, et al. antiSMASH 6.0: improving cluster detection and comparison capabilities. Nucl Acids Res. 2021;49:W29–35.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Ferrer-González FX, Widner B, Holderman NR, Glushka J, Edison AS, Kujawinski EB, et al. Resource partitioning of phytoplankton metabolites that support bacterial heterotrophy. ISME J. 2021;15:762–73.

    PubMed 
    Article 

    Google Scholar 


  • Source: Ecology - nature.com

    Ancient marine sediment DNA reveals diatom transition in Antarctica

    Small eddies play a big role in feeding ocean microbes