in

Alpha and beta phylogenetic diversities jointly reveal ant community assembly mechanisms along a tropical elevational gradient

  • Ricklefs, R. E. A comprehensive framework for global patterns in biodiversity. Ecol. Lett. 7, 1–15 (2004).

    Article 

    Google Scholar 

  • Dolson, S. J. et al. Diversity and phylogenetic community structure across elevation during climate change in a family of hyperdiverse neotropical beetles (Staphylinidae). Ecography 44, 740–752 (2021).

    Article 

    Google Scholar 

  • Montaño-Centellas, F. A., McCain, C. & Loiselle, B. A. Using functional and phylogenetic diversity to infer avian community assembly along elevational gradients. Glob. Ecol. Biogeogr. 29, 232–245 (2020).

    Article 

    Google Scholar 

  • Wiens, J. J. et al. Niche conservatism as an emerging principle in ecology and conservation biology. Ecol. Lett. 13, 1310–1324 (2010).

    PubMed 
    Article 

    Google Scholar 

  • Cavender-Bares, J., Kozak, K. H., Fine, P. V. A. & Kembel, S. W. The merging of community ecology and phylogenetic biology. Ecol. Lett. 12, 693–715 (2009).

    PubMed 
    Article 

    Google Scholar 

  • Mayfield, M. M. & Levine, J. M. Opposing effects of competitive exclusion on the phylogenetic structure of communities. Ecol. Lett. 13, 1085–1093 (2010).

    PubMed 
    Article 

    Google Scholar 

  • Webb, C. O., Ackerly, D. D., McPeek, M. A. & Donoghue, M. J. Phylogenies and community ecology. Annu. Rev. Ecol. Syst. 33, 475–505 (2002).

    Article 

    Google Scholar 

  • Hubbell, S. P. The Unified Neutral Theory of Biodiversity and Biogeography (MPB-32) Vol. 32 (Princeton University Press, 2001).

    Google Scholar 

  • Kraft, N. J. B., Cornwell, W. K., Webb, C. O. & Ackerly, D. D. Trait evolution, community assembly, and the phylogenetic structure of ecological communities. Am. Nat. 170, 271–283 (2007).

    PubMed 
    Article 

    Google Scholar 

  • Cadotte, M. W. & Tucker, C. M. Should environmental filtering be abandoned?. Trends Ecol. Evol. 32, 429–437 (2017).

    PubMed 
    Article 

    Google Scholar 

  • Mouchet, M. A. et al. Functional diversity measures: An overview of their redundancy and their ability to discriminate community assembly rules. Funct. Ecol. 24, 867–876 (2010).

    Article 

    Google Scholar 

  • Graham, C. H. & Fine, P. V. A. Phylogenetic beta diversity: Linking ecological and evolutionary processes across space in time. Ecol. Lett. 11, 1265–1277 (2008).

    PubMed 
    Article 

    Google Scholar 

  • Qian, H., Jin, Y., Leprieur, F., Wang, X. & Deng, T. Geographic patterns and environmental correlates of taxonomic and phylogenetic beta diversity for large-scale angiosperm assemblages in China. Ecography 43, 1706–1716 (2020).

    Article 

    Google Scholar 

  • Swenson, N. G. et al. Phylogenetic and functional alpha and beta diversity in temperate and tropical tree communities. Ecology 93, 112–125 (2012).

    Article 

    Google Scholar 

  • Qian, H., Hao, Z. & Zhang, J. Phylogenetic structure and phylogenetic diversity of angiosperm assemblages in forests along an elevational gradient in Changbaishan, China. J. Plant Ecol. 7, 154–165 (2014).

    Article 

    Google Scholar 

  • Chase, J. M. & Myers, J. A. Disentangling the importance of ecological niches from stochastic processes across scales. Philos. Trans. R. Soc. B Biol. Sci. 366, 2351–2363 (2011).

    Article 

    Google Scholar 

  • Leibold, M. A., Economo, E. P. & Peres-Neto, P. Metacommunity phylogenetics: Separating the roles of environmental filters and historical biogeography. Ecol. Lett. 13, 1290–1299 (2010).

    PubMed 
    Article 

    Google Scholar 

  • Ricklefs, R. E. Evolutionary diversification and the origin of the diversity-environment relationship. Ecology 87, 3–13 (2006).

    Article 

    Google Scholar 

  • Zhang, J. L. et al. Phylogenetic beta diversity in tropical forests: Implications for the roles of geographical and environmental distance. J. Syst. Evol. 51, 71–85 (2013).

    Article 

    Google Scholar 

  • Baselga, A. The relationship between species replacement, dissimilarity derived from nestedness, and nestedness. Glob. Ecol. Biogeogr. 21, 1223–1232 (2012).

    Article 

    Google Scholar 

  • Leprieur, F. et al. Quantifying phylogenetic beta diversity: Distinguishing between ‘true’ turnover of lineages and phylogenetic diversity gradients. PLoS ONE https://doi.org/10.1371/journal.pone.0042760 (2012).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Bishop, T. R., Robertson, M. P., van Rensburg, B. J. & Parr, C. L. Contrasting species and functional beta diversity in montane ant assemblages. J. Biogeogr. 42, 1776–1786 (2015).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Economo, E. P., Narula, N., Friedman, N. R., Weiser, M. D. & Guénard, B. Macroecology and macroevolution of the latitudinal diversity gradient in ants. Nat. Commun. 9, 1–8 (2018).

    CAS 
    Article 

    Google Scholar 

  • Lessard, J. P., Fordyce, J. A., Gotelli, N. J. & Sanders, N. J. Invasive ants alter the phylogenetic structure of ant communities. Ecology 90, 2664–2669 (2009).

    PubMed 
    Article 

    Google Scholar 

  • Liu, C., Dudley, K. L., Xu, Z. H. & Economo, E. P. Mountain metacommunities: climate and spatial connectivity shape ant diversity in a complex landscape. Ecography 41, 101–112 (2018).

    Article 

    Google Scholar 

  • Smith, M. A., Hallwachs, W. & Janzen, D. H. Diversity and phylogenetic community structure of ants along a Costa Rican elevational gradient. Ecography 37, 720–731 (2014).

    Article 

    Google Scholar 

  • Machac, A., Janda, M., Dunn, R. R. & Sanders, N. J. Elevational gradients in phylogenetic structure of ant communities reveal the interplay of biotic and abiotic constraints on diversity. Ecography 34, 364–371 (2011).

    Article 

    Google Scholar 

  • Guo, Q. et al. Global variation in elevational diversity patterns. Sci. Rep. 3, 1 (2013).

    CAS 

    Google Scholar 

  • Kluge, J., Kessler, M. & Dunn, R. R. What drives elevational patterns of diversity? A test of geometric constraints, climate and species pool effects for pteridophytes on an elevational gradient in Costa Rica. Glob. Ecol. Biogeogr. 15, 358–371 (2006).

    Article 

    Google Scholar 

  • Sanders, N. J., Lessard, J. P., Fitzpatrick, M. C. & Dunn, R. R. Temperature, but not productivity or geometry, predicts elevational diversity gradients in ants across spatial grains. Glob. Ecol. Biogeogr. 16, 640–649 (2007).

    Article 

    Google Scholar 

  • Malsch, A. K. F. et al. An analysis of declining ant species richness with increasing elevation at Mount Kinabalu, Sabah, Borneo. Asian Myrmecol. 2, 33–49 (2008).

    Google Scholar 

  • Pérez-Toledo, G. R., Valenzuela-González, J. E., Moreno, C. E., Villalobos, F. & Silva, R. R. Patterns and drivers of leaf-litter ant diversity along a tropical elevational gradient in Mexico. J. Biogeogr. 48, 2515 (2021).

    Article 

    Google Scholar 

  • Szewczyk, T. M. & McCain, C. M. A systematic review of global drivers of ant elevational diversity. PLoS ONE 11, e155040 (2016).

    Article 

    Google Scholar 

  • McCain, C. M. & Grytnes, J.-A.A. Elevational gradients in species richness. In Encyclopedia of Life Sciences (ed. Wiley, J.) (Wiley, 2010). https://doi.org/10.1002/9780470015902.a0022548.

    Chapter 

    Google Scholar 

  • Silva, R. R. & Brandão, C. R. F. Morphological patterns and community organization in leaf-litter ant assemblages. Ecol. Monogr. https://doi.org/10.1890/08-1298.1 (2010).

    Article 

    Google Scholar 

  • Dunn, R. R. et al. Climatic drivers of hemispheric asymmetry in global patterns of ant species richness. Ecol. Lett. 12, 324–333 (2009).

    PubMed 
    Article 

    Google Scholar 

  • Warren, R. J. & Chick, L. Upward ant distribution shift corresponds with minimum, not maximum, temperature tolerance. Glob. Chang. Biol. 19, 2082–2088 (2013).

    ADS 
    PubMed 
    Article 

    Google Scholar 

  • Cerdá, X. & Retana, J. Alternative strategies by thermophilic ants to cope with extreme heat: Individual versus colony level traits. Oikos 89, 155–163 (2000).

    Article 

    Google Scholar 

  • Kadochová, Š & Frouz, J. Thermoregulation strategies in ants in comparison to other social insects, with a focus on red wood ants (Formica rufa group). F1000 Res. 2, 280 (2013).

    Article 

    Google Scholar 

  • Moreau, C. S., Bell, C. D., Vila, R., Archibald, S. B. & Pierce, N. E. Phylogeny of the ants: diversification in the age of angiosperms. Science 312, 101–104 (2006).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Rabeling, C., Brown, J. M. & Verhaagh, M. Newly discovered sister lineage sheds light on early ant evolution. Proc. Natl. Acad. Sci. 105, 14913–14917 (2008).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Ward, P. S., Brady, S. G., Fisher, B. L. & Schultz, T. R. The evolution of myrmicine ants: Phylogeny and biogeography of a hyperdiverse ant clade (Hymenoptera: Formicidae). Syst. Entomol. 40, 61–81 (2015).

    Article 

    Google Scholar 

  • Pie, M. R. The macroevolution of climatic niches and its role in ant diversification. Ecol. Entomol. 41, 301–307 (2016).

    Article 

    Google Scholar 

  • Smith, M. R. Revision of the genus Stenamma Westwood in America north of Mexico (Hymenoptera, Formicidae). Am. Midl. Nat. 57, 133–174 (1957).

    Article 

    Google Scholar 

  • Herbers, J. M. & Johnson, C. A. Social structure and winter survival in acorn ants. Oikos 116, 829–835 (2007).

    Article 

    Google Scholar 

  • Kaspari, M. & Weiser, M. D. Ant activity along moisture gradients in a neotropical forest1. Biotropica 32, 703–711 (2006).

    Article 

    Google Scholar 

  • Flores, O., Seoane, J., Hevia, V. & Azcárate, F. M. Spatial patterns of species richness and nestedness in ant assemblages along an elevational gradient in a Mediterranean mountain range. PLoS ONE 13, 1–16 (2018).

    Google Scholar 

  • Almeida, R. P. S. et al. Induced drought strongly affects richness and composition of ground-dwelling ants in the eastern Amazon. BioRxiv (2020).

  • Le Breton, J., Chazeau, J. & Jourdan, H. Immediate impacts of invasion by Wasmannia auropunctata (Hymenoptera: Formicidae) on native litter ant fauna in a New Caledonian rainforest. Austral Ecol. 28, 204–209 (2003).

    Article 

    Google Scholar 

  • Vonshak, M., Dayan, T., Ionescu-Hirsh, A., Freidberg, A. & Hefetz, A. The little fire ant Wasmannia auropunctata: A new invasive species in the Middle East and its impact on the local arthropod fauna. Biol. Invasions 12, 1825–1837 (2010).

    Article 

    Google Scholar 

  • Wheeler, W. M. Ants: Their Structure, Development and Behavior (Columbia University Press, 1910).

    Google Scholar 

  • Cavender-Bares, J., Ackerly, D. D., Baum, D. A. & Bazzaz, F. A. Phylogenetic overdispersion in Floridian oak communities. Am. Nat. 163, 823–843 (2004).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Parr, C. L., Sinclair, B. J., Andersen, A. N., Gaston, K. J. & Chown, S. L. Constraint and competition in assemblages: A cross-continental and modeling approach for ants. Am. Nat. 165, 481–494 (2005).

    PubMed 
    Article 

    Google Scholar 

  • Retana, J. & Cerdá, X. Patterns of diversity and composition of Mediterranean ground ant communities tracking spatial and temporal variability in the thermal environment. Oecologia 123, 436–444 (2000).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Hawkins, B. A. et al. Energy, water, and broad-scale geographic patterns of species richness. Ecology 84, 3105–3117 (2003).

    Article 

    Google Scholar 

  • Graham, C. H., Parra, J. L., Rahbek, C. & McGuire, J. A. Phylogenetic structure in tropical hummingbird communities. Proc. Natl. Acad. Sci. 106, 19673–19678 (2009).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Camacho, G. P., Loss, A. C., Fisher, B. L. & Blaimer, B. B. Spatial phylogenomics of acrobat ants in Madagascar—Mountains function as cradles for recent diversity and endemism. J. Biogeogr. 1, 1706–1719. https://doi.org/10.1111/jbi.14107 (2021).

    Article 

    Google Scholar 

  • Lobo, J. M. & Halffter, G. Biogeographical and ecological factors affecting the altitudinal variation of mountainous communities of coprophagous beetles (Coleoptera: Scarabaeoidea): A comparative study. Ann. Entomol. Soc. Am. 93, 115–126 (2000).

    Article 

    Google Scholar 

  • Halffter, G., Favila, M. & Arellano, L. Spatial distribution of three groups of Coleoptera along an altitudinal transect in the Mexican Transition Zone and its biogeographical implications. Elytron 9, 1–10 (1995).

    Google Scholar 

  • Blaimer, B. B. et al. Phylogenomic methods outperform traditional multi-locus approaches in resolving deep evolutionary history: a case study of formicine ants. BMC Evol. Biol. 15, 1–14 (2015).

    Article 

    Google Scholar 

  • Longino, J. T., Branstetter, M. G. & Colwell, R. K. How ants drop out: ant abundance on tropical mountains. PLoS ONE 9, e104030 (2014).

    ADS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Longino, J. T. & Branstetter, M. G. The truncated bell: An enigmatic but pervasive elevational diversity pattern in Middle American ants. Ecography 42, 272–283 (2019).

    Article 

    Google Scholar 

  • Branstetter, M. G. Origin and diversification of the cryptic ant genus Stenamma Westwood (Hymenoptera: Formicidae), inferred from multilocus molecular data, biogeography and natural history. Syst. Entomol. 37, 478–496 (2012).

    Article 

    Google Scholar 

  • Prebus, M. Insights into the evolution, biogeography and natural history of the acorn ants, genus Temnothorax Mayr (hymenoptera: Formicidae). BMC Evol. Biol. 17, 1–22 (2017).

    Article 

    Google Scholar 

  • Kluge, J. & Kessler, M. Phylogenetic diversity, trait diversity and niches: Species assembly of ferns along a tropical elevational gradient. J. Biogeogr. 38, 394–405 (2011).

    Article 

    Google Scholar 

  • Janzen, D. H. Why mountain passes are higher in the tropics. Am. Nat. 101, 233–249 (1967).

    Article 

    Google Scholar 

  • Fernandes, G. W. et al. Cerrado to rupestrian grasslands: Patterns of species distribution and the forces shaping them along an altitudinal gradient. in Ecology and Conservation of Mountaintop Grasslands in Brazil 345–378 (2016). https://doi.org/10.1007/978-3-319-29808-5_15.

  • Leibold, M. A. et al. The metacommunity concept: A framework for multi-scale community ecology. Ecol. Lett. 7, 601–613 (2004).

    Article 

    Google Scholar 

  • Perrigo, A., Hoorn, C. & Antonelli, A. Why mountains matter for biodiversity. J. Biogeogr. 47, 315–325 (2020).

    Article 

    Google Scholar 

  • Myers, N., Mittermeier, R. A., Mittermeier, C. G., Da Fonseca, G. A. B. & Kent, J. Biodiversity hotspots for conservation priorities. Nature 403, 853–858 (2000).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Colwell, R. K., Brehm, G., Cardelus, C. L., Gilman, A. C. & Longino, J. T. Global warming, elevational range shifts and lowland biotic attrition in the wet tropics. Science 322, 258–261 (2008).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Moreau, C. S. & Bell, C. D. Testing the museum versus cradle tropical biological diversity hypothesis: Phylogeny, diversification, and ancestral biogeographic range evolution of the ants. Evolution 67, 2240–2257 (2013).

    PubMed 
    Article 

    Google Scholar 

  • Borowiec, M. L. Generic revision of the ant subfamily Dorylinae (Hymenoptera, Formicidae). Zookeys 1, 280 (2016).

    Google Scholar 

  • Lapolla, J. S., Brady, S. G. & Shattuck, S. O. Phylogeny and taxonomy of the Prenolepis genus-group of ants (Hymenoptera: Formicidae). Syst. Entomol. 35, 118–131 (2010).

    Article 

    Google Scholar 

  • Schmidt, C. A. & Shattuck, S. O. The higher classification of the ant subfamily Ponerinae (Hymenoptera: Formicidae), with a review of ponerine ecology and behavior. Zootaxa 3817, 1–242 (2014).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Revell, L. J. phytools: An R package for phylogenetic comparative biology (and other things). Methods Ecol. Evol. 3, 217–223 (2012).

    Article 

    Google Scholar 

  • Arnan, X., Arcoverde, G. B., Pie, M. R., Ribeiro-Neto, J. D. & Leal, I. R. Increased anthropogenic disturbance and aridity reduce phylogenetic and functional diversity of ant communities in Caatinga dry forest. Sci. Total Environ. 631, 429–438 (2018).

    ADS 
    PubMed 
    Article 

    Google Scholar 

  • Divieso, R., Silva, T. S. R. & Pie, M. R. Morphological evolution in the ant reproductive caste. BioRxiv https://doi.org/10.1101/2020.07.18.210302 (2020).

    Article 

    Google Scholar 

  • Paradis, E. et al. Package ‘ape’. Anal. Phylogenet. Evol. 2, 1–10 (2019).

    Google Scholar 

  • Faith, D. P. Conservation evaluation and phylogenetic diversity. Biol. Conserv. 61, 1–10 (1992).

    Article 

    Google Scholar 

  • Tucker, C. M. et al. A guide to phylogenetic metrics for conservation, community ecology and macroecology. Biol. Rev. 92, 698–715 (2017).

    PubMed 
    Article 

    Google Scholar 

  • Webb, C. O. Exploring the phylogenetic structure of ecological communities: An example for rain forest trees. Am. Nat. 156, 145–155 (2000).

    PubMed 
    Article 

    Google Scholar 

  • Tucker, C. M. et al. Assessing the utility of conserving evolutionary history. Biol. Rev. 94, 1740–1760 (2019).

    PubMed 
    Article 

    Google Scholar 

  • Kembel, S. W. et al. Picante: R tools for integrating phylogenies and ecology. Bioinformatics 26, 1463–1464 (2010).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • R Core Team. A language and environment for statistical computing. R Found. Stat. Comput. 2, https://www.R-project.org (2021).

  • Baselga, A. & Orme, C. D. L. Betapart: An R package for the study of beta diversity. Methods Ecol. Evol. 3, 808–812 (2012).

    Article 

    Google Scholar 

  • Dobrovolski, R., Melo, A. S., Cassemiro, F. A. S. & Diniz-Filho, J. A. F. Climatic history and dispersal ability explain the relative importance of turnover and nestedness components of beta diversity. Glob. Ecol. Biogeogr. 21, 191–197 (2012).

    Article 

    Google Scholar 

  • Peixoto, F. P. et al. Geographical patterns of phylogenetic beta-diversity components in terrestrial mammals. Glob. Ecol. Biogeogr. 26, 573–583 (2017).

    Article 

    Google Scholar 

  • Körner, C. The use of ‘altitude’ in ecological research. Trends Ecol. Evol. 22, 569–574 (2007).

    PubMed 
    Article 

    Google Scholar 

  • Sundqvist, M. K., Sanders, N. J. & Wardle, D. A. Community and ecosystem responses to elevational gradients: Processes, mechanisms, and insights for global change. Annu. Rev. Ecol. Evol. Syst. 44, 261–280 (2013).

    Article 

    Google Scholar 

  • Cuervo-Robayo, A. P. et al. An update of high-resolution monthly climate surfaces for Mexico. Int. J. Climatol. 34, 2427–2437 (2014).

    Article 

    Google Scholar 

  • Hijmans, R. J., Phillips, S., Leathwick, J., Elith, J. & Hijmans, M. R. J. Package ‘dismo’. Circles 9, 1–68 (2017).

    Google Scholar 

  • Schwarz, G. Estimating the dimension of a model. Ann. Stat. 6, 461–464 (1978).

    MathSciNet 
    MATH 
    Article 

    Google Scholar 

  • Guthery, F. S., Burnham, K. P. & Anderson, D. R. Model Selection and Multimodel Inference: A Practical Information-Theoretic Approach Vol. 67 (Springer, 2003).

    Google Scholar 

  • Mazerolle, M. J. Improving data analysis in herpetology: Using Akaike’s information criterion (AIC) to assess the strength of biological hypotheses. Amphib. Reptil. 27, 169–180 (2006).

    Article 

    Google Scholar 

  • Ferrier, S., Manion, G., Elith, J. & Richardson, K. Using generalized dissimilarity modelling to analyse and predict patterns of beta diversity in regional biodiversity assessment. Divers. Distrib. 13, 252–264 (2007).

    Article 

    Google Scholar 

  • Fitzpatrick, M. C. et al. Environmental and historical imprints on beta diversity: Insights from variation in rates of species turnover along gradients. Proc. R. Soc. B Biol. Sci. 280, 20131201 (2013).

    Article 

    Google Scholar 

  • Manion, G. et al. gdm: Generalized dissimilarity modeling. R Packag. version (2018).

  • Wickham, H. Ggplot2. Wiley Interdiscip. Rev. Comput. Stat. 3, 180–185 (2011).

    Article 

    Google Scholar 


  • Source: Ecology - nature.com

    MIT expands research collaboration with Commonwealth Fusion Systems to build net energy fusion machine, SPARC

    Stop ignoring map uncertainty in biodiversity science and conservation policy