in

An isolated population reveals greater genetic structuring of the Australian dingo

  • Alvares, F. et al. Old Wolrd Canis spp. with taxonomic ambiguity: Workshop conclusions and recommendations Vairao, Portugal, 28th–30th May 2019. Canid News (Online Edition) (2019).

  • Jackson, S. M. et al. Taxonomy of the dingo: It’s an ancient dog. Aust. Zool. 41, 347–357 (2021).

    Google Scholar 

  • Stephens, D., Wilton, A. N., Fleming, P. J. S. & Berry, O. Death by sex in an Australian icon: A continent-wide survey reveals extensive hybridization between dingoes and domestic dogs. Mol. Ecol. 24, 5643–5656 (2015).

    CAS 
    PubMed 

    Google Scholar 

  • Cairns, K. M., Shannon, L. M., Koler-Matznick, J., Ballard, J. W. O. & Boyko, A. R. Elucidating biogeographical patterns in Australian native canids using genome wide SNPs. PLoS ONE 13, e0198754 (2018).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Fleming, P. J. S., Ballard, G. & Cutter, N. There is no Dingo dilemma: legislation facilitates culling, containment and conservation of Dingoes in New South Wales. Aust. Zool. 41, 408–416 (2021).

    Google Scholar 

  • Corbett, L. K. The Dingo in Australia and Asia. Second edn, (JB Books Australia, 2001).

  • Newsome, T. M. et al. Making a new dog?. Bioscience 67, 374–381 (2017).

    Google Scholar 

  • Wang, G.-D. et al. Out of southern East Asia: the natural history of domestic dogs across the world. Cell Res. 26, 21–33 (2016).

    PubMed 

    Google Scholar 

  • Smith, B. The Dingo Debate: Origins, Behaviour and Conservation. (CSIRO Publishing, 2015).

  • Jackson, S. M. et al. The dogma of dingoes-taxonomic status of the dingo: A reply to Smith et al. Zootaxa 4564, 198–212 (2019).

    Google Scholar 

  • Zhang, S. J. et al. Genomic regions under selection in the feralization of the dingoes. Nat. Commun. 11, 671 (2020).

    ADS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Balme, J. & O’Connor, S. Dingoes and Aboriginal social organization in Holocene Australia. J. Archaeol. Sci. Rep. 7, 775–781 (2016).

    Google Scholar 

  • Cairns, K. M. What is a dingo – origins, hybridisation and identity. Aust. Zool. 41(3), 322–337 (2021).

    Google Scholar 

  • Allen, B. L. & West, P. Influence of dingoes on sheep distribution in Australia. Aust. Vet. J. 91, 261–267 (2013).

    CAS 
    PubMed 

    Google Scholar 

  • Fleming, P. J. S. in Carnivores of Australia: Past, Present and Future (eds A.S. Glen & C.R. Dickman) Ch. 6, 105–149 (CSIRO Publishing, 2014).

  • Stephens, D. The molecular ecology of Australian wild dogs: hybridisation, gene flow and genetic structure at multiple geographic scales, The University of Western Australia, (2011).

  • Cairns, K. M., Nesbitt, B. J., Laffan, S. W., Letnic, M. & Crowther, M. S. Geographic hot spots of dingo genetic ancestry in southeastern Australia despite hybridisation with domestic dogs. Conserv. Genet. 21, 77–90 (2020).

    CAS 

    Google Scholar 

  • Wilton, A. N., Steward, D. J. & Zafiris, K. Microsatellite variation in the Australian dingo. J. Hered. 90, 108–111 (1999).

    CAS 
    PubMed 

    Google Scholar 

  • Allendorf, F. W., Leary, R. F., Spruell, P. & Wenburg, J. K. The problems with hybrids: Setting conservation guidelines. Trends Ecol. Evol. 16, 613–622 (2001).

    Google Scholar 

  • Atkinson, J. An account of the state of agriculture & grazing in New South Wales. (J. Cross, 1826).

  • Massy, C. The Australian Merino: The Story of a Nation (Revised and updated). xxii,1262 (Random House Australia, 2007).

  • Cairns, K. M., Brown, S. K., Sacks, B. N. & Ballard, J. W. O. Conservation implications for dingoes from the maternal and paternal genome: Multiple populations, dog introgression, and demography. Ecol. Evol. 7, 9787–9807 (2017).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Kopelman, N. M., Mayzel, J., Jakobsson, M., Rosenberg, N. A. & Mayrose, I. Clumpak: A program for identifying clustering modes and packaging population structure inferences across K. Mol. Ecol. Resour. 15, 1179–1191 (2015).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Driscoll, C., Yamaguchi, N., O’Brien, S. J. & Macdonald, D. W. A suite of genetic markers useful in assessing wildcat (Felis silvestris ssp.)-domestic cat (Felis silvestris catus) admixture. J. Hered. 102(1), S87–S90 (2011).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Bohling, J. H. & Waits, L. P. Factors influencing red wolf–coyote hybridization in eastern North Carolina USA. Biol. Conserv. 184, 108–116 (2015).

    Google Scholar 

  • Fleming, P., Corbett, L., Harden, R. & Thomson, P. in Managing the Impacts of Dingoes and Other Wild Dogs. (Bureau of Rural Sciences, Canberra, 2001).

  • Van Veldhuisen, R. Pipe dreams: A history of water supply in the Wimmera-Mallee (Wimmera Mallee Water, 2001).

  • Newsome, A. The distribution of red kangaroos, Megaleia rufa (Desmarest), about sources of persistent food and water in central Australia. Aust. J. Zool. 13, 289–300 (1965).

    Google Scholar 

  • James, C. D., Landsberg, J. & Morton, S. R. Provision of watering points in the Australian arid zone: A review of effects on biota. J. Arid Environ. 41, 87–121 (1999).

    ADS 

    Google Scholar 

  • Robinson, J. A., Brown, C., Kim, B. Y., Lohmueller, K. E. & Wayne, R. K. Purging of strongly deleterious mutations explains long-term persistence and absence of inbreeding depression in island foxes. Curr. Biol. 28, 3487-3494.e3484 (2018).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Benazzo, A. et al. Survival and divergence in a small group: The extraordinary genomic history of the endangered Apennine brown bear stragglers. PNAS 114, E9589–E9597 (2017).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Mattucci, F. et al. Genomic approaches to identify hybrids and estimate admixture times in European wildcat populations. Sci. Rep. 9, 11612 (2019).

    ADS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Thomson, P. C., Rose, K. & Kok, N. E. The behavioural ecology of dingoes in north-western Australia. VI. Temporary extra-terrestrial movements and dispersal. Wildl. Res. 19, 585–595 (1992).

    Google Scholar 

  • Newsome, T. M., Ballard, G.-A., Dickman, C. R., Fleming, P. J. S. & van de Ven, R. Home range, activity and sociality of a top predator, the dingo: A test of the Resource Dispersion Hypothesis. Ecography 36, 914–925 (2013).

    Google Scholar 

  • Giglio, R. M., Rocke, T. E., Osorio, J. E. & Latch, E. K. Characterizing patterns of genomic variation in the threatened Utah prairie dog: Implications for conservation and management. Evol. Appl. 14, 1036–1051 (2021).

    PubMed 

    Google Scholar 

  • Conroy, G. C. et al. Conservation concerns associated with low genetic diversity for K’gari–Fraser Island dingoes. Sci. Rep. 11, 9503 (2021).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Frankham, R. Do island populations have less genetic variation than mainland populations?. Heredity 78, 311–327 (1997).

    PubMed 

    Google Scholar 

  • Funk, W. C. et al. Adaptive divergence despite strong genetic drift: genomic analysis of the evolutionary mechanisms causing genetic differentiation in the island fox (Urocyon littoralis). Mol. Ecol. 25, 2176–2194 (2016).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Behrendorff, L. Best-practice dingo management: six lessons from K’gari (Fraser Island). Aust. Zool. 41, 521–533 (2021).

    Google Scholar 

  • van Eeden, L. M., Smith, B. P., Crowther, M. S., Dickman, C. R. & Newsome, T. M. ‘The dingo menace’: An historic survey on graziers’ management of an Australian carnivore. Pac. Conserv. Biol. 25, 245–256 (2019).

    Google Scholar 

  • Whiting, S. D., Long, J. L., Hadden, K. M., Lauder, A. D. K. & Koch, A. U. Insights into size, seasonality and biology of a nesting population of the Olive Ridley turtle in northern Australia. Wildl. Res. 34, 200–210 (2007).

    Google Scholar 

  • Banks, S. C., Hoyle, S. D., Horsup, A., Sunnucks, P. & Taylor, A. C. Demographic monitoring of an entire species (the northern hairy-nosed wombat, Lasiorhinus krefftii) by genetic analysis of non-invasively collected material. Anim. Conserv. 6, 101–107 (2003).

    Google Scholar 

  • Parker, H. G. et al. Genomic analyses reveal the influence of geographic origin, migration, and hybridization on modern dog breed development. Cell Rep. 19, 697–708 (2017).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Thackway, R. & Cresswell, I. An Interim Biogeographic Regionalisation for Australia: A Framework for Setting Priorities in the National Reserves System Cooperative Program. Version 4, (Australian Nature Conservation Agency, Reserve Systems Unit, 1995).

  • Bureau of Meteorology & CSIRO. (Bureau of Meteorology, CSIRO and Farmlink, http://www.bom.gov.au/climate/climate-guides/guides/01-Mallee-VIC-Climate-Guide.pdf, 2019).

  • Rowan, J. N. & Downes, R. G. in Soil Conservation Authority of Victoria (ed Brookes, A.C.) 1–55 (Govt. Printer, Melbourne, 1963).

  • Longmire, J. L., Maltbie, M. & Baker, R. J. Use of “lysis buffer” in DNA isolation and its implications for museum collections. Occas. Pap. Mus. Tex. Tech. Univ. 163, 1–3 (1997).

    Google Scholar 

  • Tatler, J., Prowse, T. A. A., Roshier, D. A., Cairns, K. M. & Cassey, P. Phenotypic variation and promiscuity in a wild population of pure dingoes (Canis dingo). J. Zool. Syst. Evol. Res. 59, 311–322 (2020).

    Google Scholar 

  • Pritchard, J. K., Stephens, M. & Donnelly, P. Inference of population structure using multilocus genotype data. Genetics 155, 945–959 (2000).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Francis, R. M. pophelper: An R package and web app to analyse and visualize population structure. Mol. Ecol. Resour. 17, 27–32 (2017).

    CAS 
    PubMed 

    Google Scholar 

  • Wang, J. The computer program structure for assigning individuals to populations: Easy to use but easier to misuse. Mol. Ecol. Resour. 17, 981–990 (2017).

    CAS 
    PubMed 

    Google Scholar 

  • Evanno, G., Regnaut, S. & Goudet, J. Detecting the number of clusters of individuals using the software structure: A simulation study. Mol. Ecol. 14, 2611–2620 (2005).

    CAS 
    PubMed 

    Google Scholar 

  • Earl, D. A. & von Holdt, B. M. Structure harvester: A website and program for visualizing structure output and implementing the Evanno method. Conserv. Genet. Resour. 4, 359–361 (2012).

    Google Scholar 

  • Verity, R. & Nichols, R. A. Estimating the number of subpopulations (K) in structured populations. Genetics 203, 1827–1839 (2016).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Jombart, T. adegenet: A R package for the multivariate analysis of genetic markers. Bioinformatics 24, 1403–1405 (2008).

    CAS 
    PubMed 

    Google Scholar 

  • Jombart, T., Devillard, S. & Balloux, F. Discriminant analysis of principal components: A new method for the analysis of genetically structured populations. BMC Genet. 11, 94 (2010).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Keenan, K. et al. diveRsity: An R package for the estimation and exploration of population genetics parameters and their associated errors. Methods Ecol. Evol. 4, 782–788 (2013).

    Google Scholar 

  • Peakall, R. & Smouse, P. E. genalex 6: genetic analysis in Excel. Population genetic software for teaching and research. Mol. Ecol. Notes 6, 288–295 (2006).

    Google Scholar 

  • Peakall, R. & Smouse, P. E. GenAlEx 6.5: Genetic analysis in Excel. Population genetic software for teaching and research—an update. Bioinformatics 28, 2537–2539 (2012).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Lynch, M. & Ritland, K. Estimation of pairwise relatedness with molecular markers. Genetics 152, 1753–1766 (1999).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Weir, B. S. & Cockerham, C. C. Estimating F-statistics for the analysis of population structure. Evolution 38, 1358–1370 (1984).

    CAS 
    PubMed 

    Google Scholar 

  • Jost, L. GST and its relatives do not measure differentiation. Mol. Ecol. 17, 4015–4026 (2008).

    PubMed 

    Google Scholar 

  • Do, C. et al. NeEstimator v2: Re-implementation of software for the estimation of contemporary effective population size (Ne) from genetic data. Mol. Ecol. Resour. 14, 209–214 (2014).

    CAS 
    PubMed 

    Google Scholar 

  • Shirk, A. J. & Cushman, S. A. sGD: Software for estimating spatially explicit indices of genetic diversity. Mol. Ecol. Resour. 11, 922–934 (2011).

    CAS 
    PubMed 

    Google Scholar 

  • Schnute, J., Boers, N., Haigh, R. & Couture-Beil, A. Introduction to PBSmapping. (2016).


  • Source: Ecology - nature.com

    The expanding value of long-term studies of individuals in the wild

    Advancing the energy transition amidst global crises