in

AnimalTraits – a curated animal trait database for body mass, metabolic rate and brain size

  • Westoby, M. & Wright, I. J. Land-plant ecology on the basis of functional traits. Trends Ecol. Evol. 21, 261–268 (2006).

    Article 

    Google Scholar 

  • Chown, S. L. & Gaston, K. J. Body size variation in insects: a macroecological perspective. Biol. Rev. Camb. Philos. Soc. 85, 139–169 (2010).

    Article 

    Google Scholar 

  • Parr, C. L. et al. GlobalAnts: a new database on the geography of ant traits (Hymenoptera: Formicidae). Insect Conserv. Divers. 10, 5–20 (2017).

    Article 

    Google Scholar 

  • Wolff, J. O., Wierucka, K., Uhl, G. & Herberstein, M. E. Building behavior does not drive rates of phenotypic evolution in spiders. Proceedings of the National Academy of Sciences 118, e2102693118 (2021).

    CAS 
    Article 

    Google Scholar 

  • Le Boulch, M., Déhais, P., Combes, S. & Pascal, G. The MACADAM database: a MetAboliC pAthways DAtabase for Microbial taxonomic groups for mining potential metabolic capacities of archaeal and bacterial taxonomic groups. Database 2019 (2019).

  • Madin, J. S. et al. A synthesis of bacterial and archaeal phenotypic trait data. Scientific Data 7, 170 (2020).

    CAS 
    Article 

    Google Scholar 

  • Lowe, E. C., Wolff, J. O. & Aceves-Aparicio, A. Towards establishment of a centralized spider traits database. The Journal of Arachnology (2020).

  • Díaz, S. et al. The global spectrum of plant form and function. Nature 529, 167–171 (2016).

    ADS 
    Article 

    Google Scholar 

  • Mizerek, T. L., Baird, A. H. & Madin, J. S. Species traits as indicators of coral bleaching. Coral Reefs 37, 791–800 (2018).

    ADS 
    Article 

    Google Scholar 

  • De Meester, G. & Huyghe, K. & Van Damme, R. Brain size, ecology and sociality: a reptilian perspective. Biol. J. Linn. Soc. Lond. 126, 381–391 (2019).

    Article 

    Google Scholar 

  • Cohen, J. M., Lajeunesse, M. J. & Rohr, J. R. A global synthesis of animal phenological responses to climate change. Nat. Clim. Chang. 8, 224–228 (2018).

    ADS 
    Article 

    Google Scholar 

  • Makarieva, A. M. et al. Mean mass-specific metabolic rates are strikingly similar across life’s major domains: Evidence for life’s metabolic optimum. Proceedings of the National Academy of Sciences 105, 16994 (2008).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • Gallagher, R. V. et al. Open Science principles for accelerating trait-based science across the Tree of Life. Nat Ecol Evol 4, 294–303 (2020).

    Article 

    Google Scholar 

  • R Core Team. A Language and Environment for Statistical Computing. Vienna, Austria: R Foundation for Statistical Computing. (2020).

  • Chamberlain, S. A. & Szöcs, E. taxize: taxonomic search and retrieval in R [version 2; peer review: 3 approved]. F1000Res. 2, (2013).

  • Pebesma, E., Mailund, T. & Hiebert, J. Measurement Units in R. R J. 8, 486–494 (2016).

    Article 

    Google Scholar 

  • Hiebert, J. udunits-2 bindings for R. (2016).

  • Iwaniuk, A. N. & Nelson, J. E. Can endocranial volume be used as an estimate of brain size in birds? Canadian Journal of Zoology-Revue Canadienne De Zoologie 80, 16–23 (2002).

    Article 

    Google Scholar 

  • Taylor, G. M., Nol, E. & Boire, D. Brain regions and encephalization in anurans: adaptation or stability? Brain Behav. Evol. 45, 96–109, https://doi.org/10.1159/000113543 (1995).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • McLean, D. J. AnimalTraits (v1.0.7). Zenodo. https://doi.org/10.5281/zenodo.6468938 (2022).

  • Christian, K. & Conley, K. Activity and Resting Metabolism of Varanid Lizards Compared With Typical Lizards. Aust. J. Zool. 42, 185–193, https://doi.org/10.1071/ZO9940185 (1994).

    Article 

    Google Scholar 

  • Hadley, N. F., Ahearn, G. A. & Howarth, F. G. Water and metabolic relations of cave-adapted and epigean lycosid spiders in Hawaii. J. Arachnol., 215–222 (1981).

  • Wang, L. C., Jones, D. L., MacArthur, R. A. & Fuller, W. A. Adaptation to cold: energy metabolism in an atypical lagomorph, the arctic hare (Lepus arcticus). Can. J. Zool. 51, 841–846, https://doi.org/10.1139/z73-125 (1973).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • Nevo, E. & Shkolnik, A. Adaptive metabolic variation of chromosome forms in mole rats, Spalax. Experientia 30, 724–726, https://doi.org/10.1007/bf01924150 (1974).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • Haim, A. Adaptive variations in heat production within Gerbils (genus Gerbillus) from different habitats. Oecologia 61, 49–52, https://doi.org/10.1007/bf00379087 (1984).

    ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 

  • Kamel, S. & Gatten, R. E. J. Aerobic and Anaerobic Activity Metabolism of Limbless and Fossorial Reptiles. Physiol. Zool. 56, 419–429, https://doi.org/10.1086/physzool.56.3.30152607 (1983).

    Article 

    Google Scholar 

  • Gatten, R. E. Jr. Aerobic metabolism in snapping turtles, Chelydra serpentina, after thermal acclimation. Comp. Biochem. Physiol., A: Mol. Integr. Physiol. 61, 325–337, https://doi.org/10.1016/0300-9629(78)90116-0 (1978).

    Article 

    Google Scholar 

  • Coelho, J. R. & Moore, A. J. Allometry of resting metabolic rate in cockroaches. Comp. Biochem. Physiol., A: Mol. Integr. Physiol. 94, 587–590, https://doi.org/10.1016/0300-9629(89)90598-7 (1989).

    CAS 
    Article 

    Google Scholar 

  • Lighton, J. & Garrigan, D. Ant breathing: testing regulation and mechanism hypotheses with hypoxia. J. Exp. Biol. 198, 1613–1620 (1995).

    CAS 
    Article 

    Google Scholar 

  • Pettit, T. N., Ellis, H. I. & Whittow, G. C. Basal metabolic rate in tropical seabirds. The Auk 102, 172–174, https://doi.org/10.2307/4086838 (1985).

    Article 

    Google Scholar 

  • Bozinovic, F. & Contreras, L. C. Basal rate of metabolism and temperature regulation of two desert herbivorous octodontid rodents: Octomys mimax and Tympanoctomys barrerae. Oecologia 84, 567–570, https://doi.org/10.1007/bf00328175 (1990).

    ADS 
    Article 
    PubMed 

    Google Scholar 

  • Morrison, P. & Middleton, E. H. Body temperature and metabolism in the pigmy marmoset. Folia Primatol. 6, 70–82, https://doi.org/10.1159/000155068 (1967).

    CAS 
    Article 

    Google Scholar 

  • Bartholomew, G. A. & Casey, T. M. Body temperature and oxygen consumption during rest and activity in relation to body size in some tropical beetles. J. Therm. Biol. 2, 173–176, https://doi.org/10.1016/0306-4565(77)90026-2 (1977).

    Article 

    Google Scholar 

  • Cortés, A., Báez, C., Rosenmann, M. & Pino, C. Body temperature, activity cycle and metabolic rate in a small nocturnal Chilean lizard, Garthia gaudichaudi (Sauria: Gekkonidae). Comp. Biochem. Physiol., A: Mol. Integr. Physiol. 109, 967–973, https://doi.org/10.1016/0300-9629(94)90245-3 (1994).

    Article 

    Google Scholar 

  • Leitner, P. & Nelson, J. E. Body temperature, oxygen consumption and heart rate in the Australian false vampire bat, Macroderma gigas. Comp. Biochem. Physiol. 21, 65–74, https://doi.org/10.1016/0010-406X(67)90115-6 (1967).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • Whittow, G. C., Gould, E. & Rand, D. Body temperature, oxygen consumption, and evaporative water loss in a primitive insectivore, the moon rat, Echinosorex gymnurus. J. Mammal. 58, 233–235, https://doi.org/10.2307/1379582 (1977).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • Weathers, W. W., Koenig, W. D. & Stanback, M. T. Breeding energetics and thermal ecology of the acorn woodpecker in central coastal California. Condor, 341–359, https://doi.org/10.2307/1368232 (1990).

  • Shelton, T. G. & Appel, A. G. Carbon dioxide release in Coptotermes formosanus Shiraki and Reticulitermes flavipes (Kollar): effects of caste, mass, and movement. J. Insect Physiol. 47, 213–224, https://doi.org/10.1016/S0022-1910(00)00111-6 (2001).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • Bradley, T. J., Brethorst, L., Robinson, S. & Hetz, S. Changes in the Rate of CO2 Release following Feeding in the Insect Rhodnius prolixus. Physiol. Biochem. Zool. 76, 302–309, https://doi.org/10.1086/367953 (2003).

    Article 
    PubMed 

    Google Scholar 

  • Herreid, C. F. & Full, R. J. Cockroaches on a treadmill: aerobic running. J. Insect Physiol. 30, 395–403, https://doi.org/10.1016/0022-1910(84)90097-0 (1984).

    Article 

    Google Scholar 

  • Arends, A. & McNab, B. K. The comparative energetics of ‘caviomorph’ rodents. Comp. Biochem. Physiol. A: Mol. Integr. Physiol. 130, 105–122, https://doi.org/10.1016/S1095-6433(01)00371-3 (2001).

    CAS 
    Article 

    Google Scholar 

  • McNab, B. K. The comparative energetics of rigid endothermy: the Arvicolidae. J. Zool. 227, 585–606, https://doi.org/10.1111/j.1469-7998.1992.tb04417.x (1992).

    Article 

    Google Scholar 

  • Bozinovic, F. & Rosenmann, M. Comparative energetics of South American cricetid rodents. Comp. Biochem. Physiol., A: Mol. Integr. Physiol. 91, 195–202, https://doi.org/10.1016/0300-9629(88)91616-7 (1988).

    CAS 
    Article 

    Google Scholar 

  • Haim, A. & Skinner, J. D. A comparative study of metabolic rates and thermoregulation of two African antelopes, the steenbok Raphicerus campestris and the blue duiker Cephalophus monticola. J. Therm. Biol. 16, 145–148, https://doi.org/10.1016/0306-4565(91)90036-2 (1991).

    Article 

    Google Scholar 

  • Else, P. L. & Hulbert, A. J. Comparison of the “mammal machine” and the “reptile machine”: energy production. Am. J. Physiol. Regul. Integr. Comp. Physiol. 240, R3–R9, https://doi.org/10.1152/ajpregu.1981.240.1.R3 (1981).

    CAS 
    Article 

    Google Scholar 

  • Duncan, F. D. & Crewe, R. M. A comparison of the energetics of foraging of three species of Leptogenys (Hymenoptera, Formicidae). Physiol. Entomol. 18, 372–378, https://doi.org/10.1111/j.1365-3032.1993.tb00610.x (1993).

    Article 

    Google Scholar 

  • Kurta, A. & Ferkin, M. The correlation between demography and metabolic rate: a test using the beach vole (Microtus breweri) and the meadow vole (Microtus pennsylvanicus). Oecologia 87, 102–105, https://doi.org/10.1007/bf00323786 (1991).

    ADS 
    Article 
    PubMed 

    Google Scholar 

  • Chown, S. L. & Holter, P. Discontinuous gas exchange cycles in Aphodius fossor (Scarabaeidae): a test of hypotheses concerning origins and mechanisms. J. Exp. Biol. 203, 397–403, https://doi.org/10.1242/jeb.203.2.397 (2000).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • Duncan, F. D. & Byrne, M. J. Discontinuous gas exchange in dung beetles: patterns and ecological implications. Oecologia 122, 452–458, https://doi.org/10.1007/s004420050966 (2000).

    ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 

  • Rezende, E. L., Silva-Durán, I., Novoa, F. F. & Rosenmann, M. Does thermal history affect metabolic plasticity?: a study in three Phyllotis species along an altitudinal gradient. J. Therm. Biol. 26, 103–108, https://doi.org/10.1016/S0306-4565(00)00029-2 (2001).

    Article 
    PubMed 

    Google Scholar 

  • Chown, S. L., Scholtz, C. H., Klok, C. J., Joubert, F. J. & Coles, K. S. Ecophysiology, range contraction and survival of a geographically restricted African dung beetle (Coleoptera: Scarabaeidae). Funct. Ecol. 9, 30–39, https://doi.org/10.2307/2390087 (1995).

    Article 

    Google Scholar 

  • Rübsamen, U., Hume, I. D. & Rübsamen, K. Effect of ambient temperature on autonomic thermoregulation and activity patterns in the rufous rat-kangaroo (Aepyprymnus rufescens: Marsupialia). J. Comp. Physiol. 153, 175–179, https://doi.org/10.1007/bf00689621 (1983).

    Article 

    Google Scholar 

  • Lewis, L. C., Mutchmor, J. A. & Lynch, R. E. Effect of Perezia pyraustae on oxygen consumption by the European corn borer, Ostrinia nubilalis. J. Insect Physiol. 17, 2457–2468, https://doi.org/10.1016/0022-1910(71)90093-X (1971).

    Article 

    Google Scholar 

  • Louw, G., Young, B. & Bligh, J. Effect of thyroxine and noradrenaline on thermoregulation, cardiac rate and oxygen consumption in the monitor lizard Varanus albigularis albigularis. J. Therm. Biol. 1, 189–193, https://doi.org/10.1016/0306-4565(76)90013-9 (1976).

    CAS 
    Article 

    Google Scholar 

  • Full, R. J., Zuccarello, D. A. & Tullis, A. Effect of variation in form on the cost of terrestrial locomotion. J. Exp. Biol. 150, 233–246 (1990).

    CAS 
    Article 

    Google Scholar 

  • Bennett, A. F., Dawson, W. R. & Bartholomew, G. A. Effects of activity and temperature on aerobic and anaerobic metabolism in the Galapagos marine iguana. J. Comp. Physiol. 100, 317–329, https://doi.org/10.1007/bf00691052 (1975).

    CAS 
    Article 

    Google Scholar 

  • Thompson, G. G. & Withers, P. C. Effects of body mass and temperature on standard metabolic rates for two Australian varanid lizards (Varanus gouldii and V. panoptes). Copeia, 343–350, https://doi.org/10.2307/1446195 (1992).

  • Hack, M. A. The effects of mass and age on standard metabolic rate in house crickets. Physiol. Entomol. 22, 325–331, https://doi.org/10.1111/j.1365-3032.1997.tb01176.x (1997).

    ADS 
    Article 

    Google Scholar 

  • Gatten, R. E. Jr. Effects of temperature and activity on aerobic and anaerobic metabolism and heart rate in the turtles Pseudemys scripta and Terrapene ornata. Comp. Biochem. Physiol., A: Mol. Integr. Physiol, https://doi.org/10.1016/0300-9629(74)90606-9 (1974).

  • Gleeson, T. T. The effects of training and captivity on the metabolic capacity of the lizard Sceloporus occidentalis. J. Comp. Physiol. 129, 123–128, https://doi.org/10.1007/bf00798176 (1979).

    CAS 
    Article 

    Google Scholar 

  • Bartholomew, G. A. & Lighton, J. R. Endothermy and energy metabolism of a giant tropical fly, Pantophthalmus tabaninus thunberg. J. Comp. Physiol., B 156, 461–467, https://doi.org/10.1007/bf00691031 (1986).

    Article 

    Google Scholar 

  • Bailey, W. J., Withers, P. C., Endersby, M. & Gaull, K. The energetic costs of calling in the bushcrisket Requena verticalis (Orthoptera: Tettigoniidae: Listroscelidinae). J. Exp. Biol. 178, 21–37 (1993).

    Article 

    Google Scholar 

  • Kotiaho, J. S. et al. Energetic costs of size and sexual signalling in a wolf spider. Proc. R. Soc. B: Biol. Sci. 265, 2203–2209, https://doi.org/10.1098/rspb.1998.0560 (1998).

    Article 

    Google Scholar 

  • Chaplin, S. B. The energetic significance of huddling behavior in common bushtits (Psaltriparus minimus). The Auk, 424-430 (1982).

  • Seymour, R. S., Withers, P. C. & Weathers, W. W. Energetics of burrowing, running, and free-living in the Namib Desert golden mole (Eremitalpa namibensis). J. Zool. 244, 107–117 (1998).

    Article 

    Google Scholar 

  • Herreid, C. F., Full, R. J. & Prawel, D. A. Energetics of Cockroach Locomotion. J. Exp. Biol. 94, 189–202 (1981).

    Article 

    Google Scholar 

  • Bartholomew, G. A., Lighton, J. R. & Louw, G. N. Energetics of locomotion and patterns of respiration in tenebrionid beetles from the Namib Desert. J. Comp. Physiol., B 155, 155–162, https://doi.org/10.1007/bf00685208 (1985).

    Article 

    Google Scholar 

  • Lighton, J. R. B. & Gillespie, R. G. The energetics of mimicry: the cost of pedestrian transport in a formicine ant and its mimic, a clubionid spider. Physiol. Entomol. 14, 173–177, https://doi.org/10.1111/j.1365-3032.1989.tb00949.x (1989).

    Article 

    Google Scholar 

  • Marhold, S. & Nagel, A. The energetics of the common mole rat Cryptomys, a subterranean eusocial rodent from Zambia. J. Comp. Physiol., B 164, 636–645, https://doi.org/10.1007/bf00389805 (1995).

    CAS 
    Article 

    Google Scholar 

  • Pauls, R. W. Energetics of the red squirrel: a laboratory study of the effects of temperature, seasonal acclimatization, use of the nest and exercise. J. Therm. Biol. 6, 79–86, https://doi.org/10.1016/0306-4565(81)90057-7 (1981).

    ADS 
    Article 

    Google Scholar 

  • Brush, A. H. Energetics, temperature regulation and circulation in resting, active and defeathered California quail, Lophortyx californicus. Comp. Biochem. Physiol. 15, 399–421, https://doi.org/10.1016/0010-406X(65)90141-6 (1965).

    Article 

    Google Scholar 

  • Bailey, C. G. & Riegert, P. W. Energy dynamics of Encoptolophus sordidus costalis (Scudder) (Orthoptera: Acrididae) in a grassland ecosystem. Can. J. Zool. 51, 91–100, https://doi.org/10.1139/z73-014 (1973).

    Article 

    Google Scholar 

  • Prinzinger, R., Lübben, I. & Schuchmann, K.-L. Energy metabolism and body temperature in 13 sunbird species (Nectariniidae). Comp. Biochem. Physiol. A: Mol. Integr. Physiol. 92, 393–402, https://doi.org/10.1016/0300-9629(89)90581-1 (1989).

    Article 

    Google Scholar 

  • Baudinette, R. V. Energy metabolism and evaporative water loss in the California ground squirrel. J. Comp. Physiol. 81, 57–72, https://doi.org/10.1007/bf00693550 (1972).

    Article 

    Google Scholar 

  • May, M. L. Energy metabolism of dragonflies (Odonata: Anisoptera) at rest and during endothermic warm-up. J. Exp. Biol. 83, 79–94 (1979).

    Article 

    Google Scholar 

  • Baudinette, R. V., Churchill, S. K., Christian, K. A., Nelson, J. E. & Hudson, P. J. Energy, water balance and the roost microenvironment in three Australian cave-dwelling bats (Microchiroptera). J. Comp. Physiol., B 170, 439–446, https://doi.org/10.1007/s003600000121 (2000).

    CAS 
    Article 

    Google Scholar 

  • Withers, P. C. Energy, Water, and Solute Balance of the Ostrich Struthio camelus. Physiol. Zool. 56, 568–579, https://doi.org/10.1086/physzool.56.4.30155880 (1983).

    Article 

    Google Scholar 

  • Hadley, N. F., Quinlan, M. C. & Kennedy, M. L. Evaporative Cooling in the Desert Cicada: Thermal Efficiency and Water/Metabolic Costs. J. Exp. Biol. 159, 269–283, https://doi.org/10.1242/jeb.159.1.269 (1991).

    Article 

    Google Scholar 

  • Dunson, W. A. & Bramham, C. R. Evaporative Water Loss and Oxygen Consumption of Three Small Lizards from the Florida Keys: Sphaerodactylus cinereus, S. notatus, and Anolis sagrei. Physiol. Zool. 54, 253–259, https://doi.org/10.1086/physzool.54.2.30155827 (1981).

    Article 

    Google Scholar 

  • Wunder, B. A. Evaporative water loss from birds: effects of artificial radiation. Comp. Biochem. Physiol. 63, 493–494, https://doi.org/10.1016/0300-9629(79)90180-4 (1979).

    Article 

    Google Scholar 

  • Maclean, G. S. Factors influencing the composition of respiratory gases in mammal burrows. Comp. Biochem. Physiol., A: Mol. Integr. Physiol. 69, 373–380, https://doi.org/10.1016/0300-9629(81)92992-3 (1981).

    Article 

    Google Scholar 

  • Campbell, K. L., McIntyre, I. W. & MacArthur, R. A. Fasting metabolism and thermoregulatory competence of the star-nosed mole, Condylura cristata (Talpidae: Condylurinae). Comp. Biochem. Physiol., A: Mol. Integr. Physiol. 123, 293–298, https://doi.org/10.1016/S1095-6433(99)00065-3 (1999).

    CAS 
    Article 

    Google Scholar 

  • Weathers, W. W., Paton, D. C. & Seymour, R. S. Field Metabolic Rate and Water Flux of Nectarivorous Honeyeaters. Aust. J. Zool. 44, 445–460, https://doi.org/10.1071/ZO9960445 (1996).

    Article 

    Google Scholar 

  • Fewell, J. H., Harrison, J. F., Lighton, J. R. B. & Breed, M. D. Foraging energetics of the ant, Paraponera clavata. Oecologia 105, 419–427, https://doi.org/10.1007/bf00330003 (1996).

    ADS 
    Article 
    PubMed 

    Google Scholar 

  • Greenstone, M. H. & Bennett, A. F. Foraging strategy and metabolic rate in spiders. Ecology 61, 1255–1259, https://doi.org/10.2307/1936843 (1980).

    Article 

    Google Scholar 

  • Schmitz, A. Functional morphology of the respiratory organs in the cellar spider Pholcus phalangioides (Arachnida, Araneae, Pholcidae). J. Comp. Physiol., B 185, 637–646, https://doi.org/10.1007/s00360-015-0914-8 (2015).

    CAS 
    Article 

    Google Scholar 

  • Marder, J. & Bernstein, R. Heat balance of the partridge Alectoris chukar exposed to moderate, high and extreme thermal stress. Comp. Biochem. Physiol., A: Mol. Integr. Physiol. 74, 149–154, https://doi.org/10.1016/0300-9629(83)90726-0 (1983).

    CAS 
    Article 

    Google Scholar 

  • Lovegrove, B. G., Raman, J. & Perrin, M. R. Heterothermy in elephant shrews, Elephantulus spp. (Macroscelidea): daily torpor or hibernation? J. Comp. Physiol., B 171, 1–10, https://doi.org/10.1007/s003600000139 (2001).

    CAS 
    Article 

    Google Scholar 

  • Zari, T. The influence of body mass and temperature on the standard metabolic rate of the herbivorous desert lizard, Uromastyx microlepis. J. Therm. Biol. 16, 129–133, https://doi.org/10.1016/0306-4565(91)90033-X (1991).

    Article 

    Google Scholar 

  • Jensen, T. F. & Nielsen, M. G. The influence of body size and temperature on worker ant respiration. Nat. Jutl. 18, 21–25 (1975).

    Google Scholar 

  • McNab, B. K. The Influence of Body Size on the Energetics and Distribution of Fossorial and Burrowing Mammals. Ecology 60, 1010–1021, https://doi.org/10.2307/1936869 (1979).

    Article 

    Google Scholar 

  • Shillington, C. Inter-sexual differences in resting metabolic rates in the Texas tarantula, Aphonopelma anax. Comp. Biochem. Physiol., A: Mol. Integr. Physiol. 142, 439–445, https://doi.org/10.1016/j.cbpa.2005.09.010 (2005).

    CAS 
    Article 

    Google Scholar 

  • Nespolo, R. F., Lardies, M. A. & Bozinovic, F. Intrapopulational variation in the standard metabolic rate of insects: repeatability, thermal dependence and sensitivity (Q10) of oxygen consumption in a cricket. J. Exp. Biol. 206, 4309–4315, https://doi.org/10.1242/jeb.00687 (2003).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • Hailey, A. & Davies, P. M. C. Lifestyle, latitude and activity metabolism of natricine snakes. J. Zool. 209, 461–476, https://doi.org/10.1111/j.1469-7998.1986.tb03604.x (1986).

    Article 

    Google Scholar 

  • Richter, T. A., Webb, P. I. & Skinner, J. D. Limits to the distribution of the southern African ice rat (Otomys sloggetti): thermal physiology or competitive exclusion? Funct. Ecol. 11, 240–246, https://doi.org/10.1046/j.1365-2435.1997.00078.x (1997).

    Article 

    Google Scholar 

  • Putnam, R. W. & Murphy, R. W. Low metabolic rate in a nocturnal desert lizard, Anarbylus switaki Murphy (Sauria: Gekkonidae). Comp. Biochem. Physiol., A: Mol. Integr. Physiol. 71, 119–123 (1982).

    Article 

    Google Scholar 

  • Lighton, J. R. B. & Fielden, L. J. Mass Scaling of Standard Metabolism in Ticks: A Valid Case of Low Metabolic Rates in Sit-and-Wait Strategists. Physiol. Zool. 68, 43–62, https://doi.org/10.1086/physzool.68.1.30163917 (1995).

    Article 

    Google Scholar 

  • Jones, D. L. & Wang, L. C.-H. Metabolic and cardiovascular adaptations in the western chipmunks, genus Eutamias. J. Comp. Physiol. 105, 219–231, https://doi.org/10.1007/bf00691124 (1976).

    Article 

    Google Scholar 

  • Casey, T. M., Withers, P. C. & Casey, K. K. Metabolic and respiratory responses of arctic mammals to ambient temperature during the summer. Comp. Biochem. Physiol. A: Mol. Integr. Physiol. 64, 331–341, https://doi.org/10.1016/0300-9629(79)90452-3 (1979).

    Article 

    Google Scholar 

  • Grant, G. S. & Whittow, G. C. Metabolic cost of incubation in the Laysan albatross and Bonin petrel. Comp. Biochem. Physiol., A: Mol. Integr. Physiol. 74, 77–82, https://doi.org/10.1016/0300-9629(83)90715-6 (1983).

    CAS 
    Article 

    Google Scholar 

  • Bennett, A. F. & Gleeson, T. T. Metabolic expenditure and the cost of foraging in the lizard Cnemidophorus murinus. Copeia, 573-577, https://doi.org/10.2307/1443864 (1979).

  • Withers, P. C., Thompson, G. G. & Seymour, R. S. Metabolic physiology of the north-western marsupial mole. Notoryctes caurinus (Marsupialia: Notoryctidae). Aust. J. Zool. 48, 241–258, https://doi.org/10.1071/ZO99073 (2000).

    Article 

    Google Scholar 

  • Thurling, D. J. Metabolic rate and life stage of the mites Tetranychus cinnabarinus boisd. (Prostigmata) and Phytoseiulus persimilis A-H. (Mesostigmata). Oecologia 46, 391–396, https://doi.org/10.1007/BF00346269 (1980).

    ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 

  • Vleck, C. M. & Vleck, D. Metabolic rate in five tropical bird species. Condor 81, 89–91, https://doi.org/10.2307/1367864 (1979).

    Article 

    Google Scholar 

  • Terblanche, J. S., Jaco Klok, C., Marais, E. & Chown, S. L. Metabolic rate in the whip-spider, Damon annulatipes (Arachnida: Amblypygi). J. Insect Physiol. 50, 637-645, j.jinsphys.2004.04.010 (2004).

  • Boyce, A. J., Mouton, J. C., Lloyd, P., Wolf, B. O. & Martin, T. E. Metabolic rate is negatively linked to adult survival but does not explain latitudinal differences in songbirds. Ecol. Lett. 23, 642–652, https://doi.org/10.1111/ele.13464 (2020).

    Article 
    PubMed 

    Google Scholar 

  • Worthen, G. L. & Kilgore, D. L. Metabolic rate of pine marten in relation to air temperature. J. Mammal. 62, 624–628, https://doi.org/10.2307/1380410 (1981).

    Article 

    Google Scholar 

  • Hails, C. J. The metabolic rate of tropical birds. Condor, 61–65, https://doi.org/10.2307/1367889 (1983).

  • Terblanche, J. S., Klok, C. J. & Chown, S. L. Metabolic rate variation in Glossina pallidipes (Diptera: Glossinidae): gender, ageing and repeatability. J. Insect Physiol. 50, 419–428, https://doi.org/10.1016/j.jinsphys.2004.02.009 (2004).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • Schmitz, A. Metabolic rates during rest and activity in differently tracheated spiders (Arachnida, Araneae): Pardosa lugubris (Lycosidae) and Marpissa muscosa (Salticidae). J. Comp. Physiol., B 174, 519–526, https://doi.org/10.1007/s00360-004-0440-6 (2004).

    CAS 
    Article 

    Google Scholar 

  • Anderson, J. F. Metabolic rates of resting salticid and thomisid spiders. J. Arachnol. 129–134 (1996).

  • Adams, N. J. & Brown, C. R. Metabolic rates of sub-Antarctic Procellariiformes: a comparative study. Comp. Biochem. Physiol., A: Mol. Integr. Physiol. 77, 169–173, https://doi.org/10.1016/0300-9629(84)90030-6 (1984).

    Article 

    Google Scholar 

  • Morrison, P. & Ryser, F. A. Metabolism and body temperature in a small hibernator, the meadow jumping mouse, Zapus hudsonius. J. Cell. Compar. Physl. 60, 169–180, https://doi.org/10.1002/jcp.1030600206 (1962).

    CAS 
    Article 

    Google Scholar 

  • Bieńkowski, P. & Marszałek, U. Metabolism and energy budget in the snow vole. Acta Theriol. 19, 55–67 (1974).

    Article 

    Google Scholar 

  • Lardies, M. A., Catalán, T. P. & Bozinovic, F. Metabolism and life-history correlates in a lowland and highland population of a terrestrial isopod. Can. J. Zool. 82, 677–687, https://doi.org/10.1139/z04-033 (2004).

    Article 

    Google Scholar 

  • Król, E. Metabolism and thermoregulation in the eastern hedgehog Erinaceus concolor. J. Comp. Physiol., B 164, 503–507, https://doi.org/10.1007/bf00714589 (1994).

    Article 

    Google Scholar 

  • Hennemann, W. W., Thompson, S. D. & Konecny, M. J. Metabolism of Crab-Eating Foxes, Cerdocyon thous: Ecological Influences on the Energetics of Canids. Physiol. Zool. 56, 319–324, https://doi.org/10.1086/physzool.56.3.30152596 (1983).

    Article 

    Google Scholar 

  • Lovegrove, B. G. The metabolism of social subterranean rodents: adaptation to aridity. Oecologia 69, 551–555, https://doi.org/10.1007/bf00410361 (1986).

    ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 

  • Prinzinger, R. & Hänssler, I. Metabolism-weight relationship in some small nonpasserine birds. Experientia 36, 1299–1300, https://doi.org/10.1007/bf01969600 (1980).

    Article 

    Google Scholar 

  • Hill, R. W. Metabolism, thermal conductance, and body temperature in one of the largest species of Peromyscus, P. pirrensis. J. Therm. Biol. 1, 109–112, https://doi.org/10.1016/0306-4565(76)90029-2 (1976).

    Article 

    Google Scholar 

  • Saarela, S. & Hissa, R. Metabolism, thermogenesis and daily rhythm of body temperature in the wood lemming, Myopus schisticolor. J. Comp. Physiol., B 163, 546–555, https://doi.org/10.1007/bf00302113 (1993).

    CAS 
    Article 

    Google Scholar 

  • MacMillen, R. E. Nonconformance of standard metabolic rate with body mass in Hawaiian Honeycreepers. Oecologia 49, 340–343, https://doi.org/10.1007/bf00347595 (1981).

    ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 

  • Krog, H. & Monson, M. Notes on the metabolism of a mountain goat. Am. J. Physiol. 178, 515–516 (1954).

    CAS 
    Article 

    Google Scholar 

  • Du Toit, J. T., Jarvis, J. U. M. & Louw, G. N. Nutrition and burrowing energetics of the Cape mole-rat Georychus capensis. Oecologia 66, 81–87, https://doi.org/10.1007/bf00378556 (1985).

    ADS 
    Article 
    PubMed 

    Google Scholar 

  • Farrell, D. J. & Wood, A. J. The nutrition of the female mink (Mustela vison). I. The metabolic rate of the mink. Can. J. Zool. 46, 41–45, https://doi.org/10.1139/z68-008 (1968).

    Article 

    Google Scholar 

  • Hennemann, W. W. & Konecny, M. J. Oxygen consumption in large spotted genets, Genetta tigrina. J. Mammal. 61, 747–750, https://doi.org/10.2307/1380332 (1980).

    Article 

    Google Scholar 

  • May, M. L., Pearson, D. L. & Casey, T. M. Oxygen consumption of active and inactive adult tiger beetles. Physiol. Entomol. 11, 171–179, https://doi.org/10.1111/j.1365-3032.1986.tb00403.x (1986).

    Article 

    Google Scholar 

  • Bartholomew, G. A. & Casey, T. M. Oxygen Consumption of Moths During Rest, Pre-Flight Warm-Up, and Flight In Relation to Body Size and Wing Morphology. J. Exp. Biol. 76, 11–25 (1978).

    Article 

    Google Scholar 

  • MacMillen, R. E., Whittow, G. C., Christopher, E. A. & Ebisu, R. J. Oxygen consumption, evaporative water loss, and body temperature in the sooty tern. The Auk, 72–79 (1977).

  • Francis, C. & Brooks, G. R. Oxygen consumption, rate of heart beat and ventilatory rate in parietalectomized lizards, Sceloporus occidentalis. Comp. Biochem. Physiol. 35, 463–469, https://doi.org/10.1016/0010-406X(70)90609-2 (1970).

    Article 

    Google Scholar 

  • Tucker, V. A. Oxygen consumption, thermal conductance, and torpor in the California pocket mouse Perognathus californicus. J. Cell. Physiol. 65, 393–403, https://doi.org/10.1002/jcp.1030650313 (1965).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • McNab, B. K. Physiological convergence amongst ant-eating and termite-eating mammals. J. Zool. 203, 485–510, https://doi.org/10.1111/j.1469-7998.1984.tb02345.x (1984).

    Article 

    Google Scholar 

  • Genoud, M., Bonaccorso, F. J. & Anends, A. Rate of metabolism and temperature regulation in two small tropical insectivorous bats (Peropteryx macrotis and Natalus tumidirostris). Comp. Biochem. Physiol. A: Mol. Integr. Physiol. 97, 229–234, https://doi.org/10.1016/0300-9629(90)90177-T (1990).

    Article 

    Google Scholar 

  • Genoud, M. & Ruedi, M. Rate of metabolism, temperature regulations, and evaporative water loss in the lesser gymnure Hylomys suillus (Insectivora, Mammalia). J. Zool. 240, 309–316, https://doi.org/10.1111/j.1469-7998.1996.tb05287.x (1996).

    Article 

    Google Scholar 

  • Ricklefs, R. E. & Matthew, K. K. Rates of oxygen consumption in four species of seabird at Palmer Station, Antarctic peninsula. Comp. Biochem. Physiol., A: Mol. Integr. Physiol. 74, 885–888, https://doi.org/10.1016/0300-9629(83)90363-8 (1983).

    CAS 
    Article 

    Google Scholar 

  • Lasiewski, R. C. & Dawson, W. R. A Re-Examination of the Relation between Standard Metabolic Rate and Body Weight in Birds. Condor 69, 13–23, https://doi.org/10.2307/1366368 (1967).

    Article 

    Google Scholar 

  • Goldstein, R. B. Relation of metabolism to ambient temperature in the Verdin. Condor 76, 116–119, https://doi.org/10.2307/1365995 (1974).

    Article 

    Google Scholar 

  • Mispagel, M. E. Relation of oxygen consumption to size and temperature in desert arthropods. Ecol. Entomol. 6, 423–431, https://doi.org/10.1111/j.1365-2311.1981.tb00634.x (1981).

    Article 

    Google Scholar 

  • Bryant, D. M., Hails, C. J. & Tatner, P. Reproductive energetics of two tropical bird species. The Auk, 25–37 (1984).

  • Holter, P. Resource utilization and local coexistence in a guild of scarabaeid dung beetles (Aphodius spp.). Oikos 39, 213–227, https://doi.org/10.2307/3544488 (1982).

    Article 

    Google Scholar 

  • Goldstein, D. L. & Nagy, K. A. Resource Utilization by Desert Quail: Time and Energy, Food and Water. Ecology 66, 378–387, https://doi.org/10.2307/1940387 (1985).

    Article 

    Google Scholar 

  • Louw, G. N., Nicolson, S. W. & Seely, M. K. Respiration beneath desert sand: carbon dioxide diffusion and respiratory patterns in a tenebrionid beetle. J. Exp. Biol. 120, 443–446 (1986).

    Article 

    Google Scholar 

  • Anderson, J. F. & Prestwich, K. N. Respiratory Gas Exchange in Spiders. Physiol. Zool. 55, 72–90, https://doi.org/10.1086/physzool.55.1.30158445 (1982).

    Article 

    Google Scholar 

  • Meyer, E. & Phillipson, J. Respiratory metabolism of the isopod Trichoniscus pusillus provisorius. Oikos, 69–74, https://doi.org/10.2307/3544200 (1983).

  • Duncan, F. D. & Dickman, C. R. Respiratory patterns and metabolism in tenebrionid and carabid beetles from the Simpson Desert, Australia. Oecologia 129, 509–517, https://doi.org/10.1007/s004420100772 (2001).

    ADS 
    Article 
    PubMed 

    Google Scholar 

  • Nielsen, M. G. Respiratory rates of ants from different climatic areas. J. Insect Physiol. 32, 125–131, https://doi.org/10.1016/0022-1910(86)90131-9 (1986).

    Article 

    Google Scholar 

  • Calder, W. A. III & Dawson, T. J. Resting metabolic rates of ratite birds: the kiwis and the emu. Comp. Biochem. Physiol., A: Mol. Integr. Physiol. 60, 479–481 (1978).

    Article 

    Google Scholar 

  • Kawamoto, T. H., Machado, Fd. A., Kaneto, G. E. & Japyassu, H. F. Resting metabolic rates of two orbweb spiders: A first approach to evolutionary success of ecribellate spiders. J. Insect Physiol. 57, 427–432, https://doi.org/10.1016/j.jinsphys.2011.01.001 (2011).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • Lehmann, F. O., Dickinson, M. H. & Staunton, J. The scaling of carbon dioxide release and respiratory water loss in flying fruit flies (Drosophila spp.). J. Exp. Biol. 203, 1613–1624 (2000).

    CAS 
    Article 

    Google Scholar 

  • Chown, S. L. et al. Scaling of insect metabolic rate is inconsistent with the nutrient supply network model. Funct. Ecol. 21, 282–290, https://doi.org/10.1111/j.1365-2435.2007.01245.x (2007).

    Article 

    Google Scholar 

  • Bartholomew, G. A. & Lighton, J. R. B. Short Communication: Ventilation and Oxygen Consumption During Rest and Locomotion in a Tropical Cockroach, Blaberus Giganteus. J. Exp. Biol. 118, 449–454 (1985).

    Article 

    Google Scholar 

  • Stahel, C. D., Megirian, D. & Nicol, S. C. Sleep and metabolic rate in the little penguin, Eudyptula minor. J. Comp. Physiol., B 154, 487–494, https://doi.org/10.1007/bf02515153 (1984).

    Article 

    Google Scholar 

  • Lighton, J. R. Slow Discontinuous Ventilation in the Namib Dune-sea Ant Camponotus Detritus (Hymenoptera, Formicidae). J. Exp. Biol. 151, 71–82 (1990).

    Article 

    Google Scholar 

  • Bech, C., Chappell, M. A., Astheimer, L. B., Londoño, G. A. & Buttemer, W. A. A ‘slow pace of life’ in Australian old-endemic passerine birds is not accompanied by low basal metabolic rates. J. Comp. Physiol., B 186, 503–512, https://doi.org/10.1007/s00360-016-0964-6 (2016).

    CAS 
    Article 

    Google Scholar 

  • Young, S. R. & Block, W. Some factors affecting metabolic rate in an Antarctic mite. Oikos, 178–185, https://doi.org/10.2307/3544180 (1980).

  • Wang, L. C.-H. & Hudson, J. W. Some physiological aspects of temperature regulation in the normothermic and torpid hispid pocket mouse, Perognathus hispidus. Comp. Biochem. Physiol. 32, 275–293, https://doi.org/10.1016/0010-406X(70)90941-2 (1970).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • Bedford, G. S. & Christian, K. A. Standard metabolic rate and preferred body temperatures in some Australian pythons. Aust. J. Zool. 46, 317–328, https://doi.org/10.1071/ZO98019 (1999).

    Article 

    Google Scholar 

  • Vogt, J. T. & Appel, A. G. Standard metabolic rate of the fire ant, Solenopsis invicta Buren: effects of temperature, mass, and caste. J. Insect Physiol. 45, 655–666, https://doi.org/10.1016/S0022-1910(99)00036-0 (1999).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • Thompson, G., Heger, N., Heger, T. & Withers, P. Standard metabolic rate of the largest Australian lizard, Varanus giganteus. Comp. Biochem. Physiol., A: Mol. Integr. Physiol. 111, 603–608, https://doi.org/10.1016/0300-9629(95)00055-C (1995).

    Article 

    Google Scholar 

  • Vitali, S. D., Withers, P. C. & Richardson, K. C. Standard metabolic rates of three nectarivorous meliphagid passerine birds. Aust. J. Zool. 47, 385–391, https://doi.org/10.1071/ZO99023 (1999).

    Article 

    Google Scholar 

  • Dawson, T. J., Grant, T. R. & Fanning, D. Standard Metabolism of Monotremes and the Evolution of Homeothermy. Aust. J. Zool. 27, 511–515, https://doi.org/10.1071/ZO9790511 (1979).

    Article 

    Google Scholar 

  • Al-Sadoon, M. K. & Abdo, N. M. Temperature effects on oxygen consumption of two nocturnal geckos, Ptyodactylus hasselquistii (Donndorff) and Bunopus tuberculatus (Blanford) (Reptilia: Gekkonidae) in Saudi Arabia. J. Comp. Physiol., B 159, 1–4, https://doi.org/10.1007/bf00692676 (1989).

    ADS 
    Article 

    Google Scholar 

  • Roxburgh, L. & Perrin, M. R. Temperature regulation and activity pattern of the round-eared elephant shrew Macroscelides proboscideus. J. Therm. Biol. 19, 13–20, https://doi.org/10.1016/0306-4565(94)90004-3 (1994).

    Article 

    Google Scholar 

  • Wang, L. C.-H. & Hudson, J. W. Temperature regulation in normothermic and hibernating eastern chipmunk, Tamias striatus. Comp. Biochem. Physiol., A: Mol. Integr. Physiol. 38, 59–90, https://doi.org/10.1016/0300-9629(71)90098-3 (1971).

    CAS 
    Article 

    Google Scholar 

  • Rfinking, L. N., Kilgore, D. L. Jr, Fairbanks, E. S. & Hamilton, J. D. Temperature regulation in normothermic black-tailed prairie dogs, Cynomys ludovicianus. Comp. Biochem. Physiol., A: Mol. Integr. Physiol. 57, 161–165, https://doi.org/10.1016/0300-9629(77)90368-1 (1977).

    Article 

    Google Scholar 

  • Chew, R. M., Lindberg, R. G. & Hayden, P. Temperature regulation in the little pocket mouse, Perognathus longimembris. Comp. Biochem. Physiol. 21, 487–505, https://doi.org/10.1016/0010-406X(67)90447-1 (1967).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • Ebisu, R. J. & Whittow, G. C. Temperature regulation in the small Indian mongoose (Herpestes auropunctatus). Comp. Biochem. Physiol. A: Mol. Integr. Physiol. 54, 309–313, https://doi.org/10.1016/S0300-9629(76)80117-X (1976).

    CAS 
    Article 

    Google Scholar 

  • Whittow, G. C., Scammell, C. A., Leong, M. & Rand, D. Temperature regulation in the smallest ungulate, the lesser mouse deer (Tragulus javanicus). Comp. Biochem. Physiol., A: Mol. Integr. Physiol. 56, 23–26, https://doi.org/10.1016/0300-9629(77)90436-4 (1977).

    CAS 
    Article 

    Google Scholar 

  • Fusari, M. H. Temperature responses of standard, aerobic metabolism by the California legless lizard, Anniella pulchra. Comp. Biochem. Physiol., A: Mol. Integr. Physiol. 77, 97–101, https://doi.org/10.1016/0300-9629(84)90018-5 (1984).

    CAS 
    Article 

    Google Scholar 

  • Dawson, T. J. & Fanning, F. D. Thermal and energetic problems of semiaquatic mammals: a study of the Australian water rat, including comparisons with the platypus. Physiol. Zool. 54, 285–296 (1981).

    Article 

    Google Scholar 

  • Campbell, K. L. & Hochachka, P. W. Thermal biology and metabolism of the American shrew-mole, Neurotrichus gibbsii. J. Mammal. 81, 578-585, 10.1644/1545-1542(2000)081<0578:TBAMOT>2.0.CO;2 (2000).

  • Hosken, D. J. Thermal Biology and Metabolism of the Greater Long-eared Bat. Nyctophilus major (Chiroptera:Vespertilionidae). Aust. J. Zool. 45, 145–156, https://doi.org/10.1071/ZO96043 (1997).

    Article 

    Google Scholar 

  • Duxbury, K. J. & Perrin, M. Thermal biology and water turnover rate in the Cape gerbil, Tatera afra (Gerbillidae). J. Therm. Biol. 17, 199–208, https://doi.org/10.1016/0306-4565(92)90056-L (1992).

    Article 

    Google Scholar 

  • Downs, C. T. & Perrin, M. R. The thermal biology of the white-tailed rat Mystromys albicaudatus, a cricetine relic in southern temperate African grassland. Comp. Biochem. Physiol., A: Mol. Integr. Physiol. 110, 65–69, https://doi.org/10.1016/0300-9629(94)00147-L (1995).

    CAS 
    Article 

    Google Scholar 

  • Downs, C. T. & Perrin, M. R. The thermal biology of three southern African elephant-shrews. J. Therm. Biol. 20, 445–450, https://doi.org/10.1016/0306-4565(95)00003-F (1995).

    Article 

    Google Scholar 

  • Maloiy, G. M. O., Kamau, J. M. Z., Shkolnik, A., Meir, M. & Arieli, R. Thermoregulation and metabolism in a small desert carnivore: the Fennec fox (Fennecus zerda)(Mammalia). J. Zool. 198, 279–291, https://doi.org/10.1111/j.1469-7998.1982.tb02076.x (1982).

    Article 

    Google Scholar 

  • Maskrey, M. & Hoppe, P. P. Thermoregulation and oxygen consumption in Kirk’s dik-dik (Madoqua kirkii) at ambient temperatures of 10–45 °C. Comp. Biochem. Physiol. A: Mol. Integr. Physiol. 62, 827–830, https://doi.org/10.1016/0300-9629(79)90010-0 (1979).

    Article 

    Google Scholar 

  • Kamau, J. M., Johansen, K. & Maloiy, G. Thermoregulation and standard metabolism of the slender mongoose (Herpestes sanguineus). Physiol. Zool. 52, 594–602 (1979).

    Article 

    Google Scholar 

  • Knight, M. H. Thermoregulation in the largest African cricetid, the giant rat Cricetomys gambianus. Comp. Biochem. Physiol., A: Mol. Integr. Physiol. 89, 705–708, https://doi.org/10.1016/0300-9629(88)90856-0 (1988).

    CAS 
    Article 

    Google Scholar 

  • Bennett, N. C., Aguilar, G. H., Jarvis, J. U. M. & Faulkes, C. G. Thermoregulation in three species of Afrotropical subterranean mole-rats (Rodentia: Bathyergidae) from Zambia and Angola and scaling within the genus Cryptomys. Oecologia 97, 222–227, https://doi.org/10.1007/bf00323153 (1994).

    ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 

  • Casey, T. M. & Casey, K. K. Thermoregulation of Arctic Weasels. Physiol. Zool. 52, 153–164, https://doi.org/10.1086/physzool.52.2.30152560 (1979).

    Article 

    Google Scholar 

  • Layne, J. N. & Dolan, P. G. Thermoregulation, metabolism, and water economy in the golden mouse (Ochrotomys nuttalli). Comp. Biochem. Physiol., A: Mol. Integr. Physiol. 52, 153–163, https://doi.org/10.1016/S0300-9629(75)80146-0 (1975).

    CAS 
    Article 

    Google Scholar 

  • Roberts, J. R. & Baudinette, R. V. Thermoregulation, Oxygen Consumption and Water Turnover in Stubble Quail, Coturnix pectoralis, and King Quail, Coturnix chinensis. Aust. J. Zool. 34, 25–33, https://doi.org/10.1071/ZO9860025 (1986).

    Article 

    Google Scholar 

  • du Plessis, A., Erasmus, T. & Kerley, G. I. Thermoregulatory patterns of two sympatric rodents: Otomys unisulcatus and Parotomys brantsii. Comp. Biochem. Physiol., A: Mol. Integr. Physiol. 94, 215–220, https://doi.org/10.1016/0300-9629(89)90538-0 (1989).

    Article 

    Google Scholar 

  • Bradley, W. & Yousef, M. Thermoregulatory responses in the plains pocket gopher, Geomys bursarius. Comp. Biochem. Physiol., A: Mol. Integr. Physiol. 52, 35–38, https://doi.org/10.1016/S0300-9629(75)80122-8 (1975).

    CAS 
    Article 

    Google Scholar 

  • Drent, R. H. & Stonehouse, B. Thermoregulatory responses of the Peruvian penguin, Spheniscus humboldti. Comp. Biochem. Physiol., A: Mol. Integr. Physiol. 40, 689–710, https://doi.org/10.1016/0300-9629(71)90254-4 (1971).

    CAS 
    Article 

    Google Scholar 

  • El-Nouty, F. D., Yousef, M. K., Magdub, A. B. & Johnson, H. D. Thyroid hormones and metabolic rate in burros, Equus asinus, and llamas, Lama glama: effects of environmental temperature. Comp. Biochem. Physiol., A: Mol. Integr. Physiol. 60, 235–237, https://doi.org/10.1016/0300-9629(78)90238-4 (1978).

    Article 

    Google Scholar 

  • Krüger, K., Prinzinger, R. & Schuchmann, K.-L. Torpor and metabolism in hummingbirds. Comp. Biochem. Physiol. A: Mol. Integr. Physiol. 73, 679–689 (1982).

    Google Scholar 

  • Bartholomew, G. A. & Barnhart, M. C. Tracheal Gases, Respiratory Gas Exchange, Body Temperature and Flight in Some Tropical Cicadas. J. Exp. Biol. 111, 131–144 (1984).

    Article 

    Google Scholar 

  • Zachariassen, K. E., Andersen, J., Maloiy, G. M. & Kamau, J. M. Transpiratory water loss and metabolism of beetles from arid areas in East Africa. Comp. Biochem. Physiol., A: Mol. Integr. Physiol. 86, 403–408, https://doi.org/10.1016/0300-9629(87)90515-9 (1987).

    Article 

    Google Scholar 

  • Bucher, T. L. Ventilation and oxygen consumption in Amazona viridigenalis. J. Comp. Physiol., B 155, 269–276, https://doi.org/10.1007/bf00687467 (1985).

    ADS 
    Article 

    Google Scholar 

  • Bickler, P. E. & Anderson, R. A. Ventilation, Gas Exchange, and Aerobic Scope in a Small Monitor Lizard, Varanus gilleni. Physiol. Zool. 59, 76–83, https://doi.org/10.1086/physzool.59.1.30156093 (1986).

    Article 

    Google Scholar 

  • Seid, M. A., Castillo, A. & Wcislo, W. T. The allometry of brain miniaturization in ants. Brain Behav. Evol. 77, 5–13, https://doi.org/10.1159/000322530 (2011).

    Article 
    PubMed 

    Google Scholar 

  • Quesada, R. et al. The allometry of CNS size and consequences of miniaturization in orb-weaving and cleptoparasitic spiders. Arthropod Struct. Dev. 40, 521–529, https://doi.org/10.1016/j.asd.2011.07.002 (2011).

    Article 
    PubMed 

    Google Scholar 

  • Mares, S., Ash, L. & Gronenberg, W. Brain allometry in bumblebee and honey bee workers. Brain Behav. Evol. 66, 50–61, https://doi.org/10.1159/000085047 (2005).

    Article 
    PubMed 

    Google Scholar 

  • Mlikovsky, J. Brain size and forearmen magnum area in crows and allies (Aves: Corvidae). Acta Soc. Zool. Bohem. 67, 203–211 (2003).

    Google Scholar 

  • Mlikovsky, J. Brain size in birds: 4. Passeriformes. Acta Soc. Zool. Bohem. 54, 27–37 (1990).

    Google Scholar 

  • Bronson, R. T. Brain weight-body weight relationships in 12 species of nonhuman primates. Am. J. Phys. Anthropol. 56, 77–81, https://doi.org/10.1002/ajpa.1330560109 (1981).

    Article 

    Google Scholar 

  • Guay, P., Weston, M., Symonds, M. & Glover, H. Brains and bravery: Little evidence of a relationship between brain size and flightiness in shorebirds. Austral Ecol. 38, 516–522, https://doi.org/10.1111/j.1442-9993.2012.02441.x (2013).

    Article 

    Google Scholar 

  • Boddy, A. M. et al. Comparative analysis of encephalization in mammals reveals relaxed constraints on anthropoid primate and cetacean brain scaling. J. Evol. Biol. 25, 981–994, https://doi.org/10.1111/j.1420-9101.2012.02491.x (2012).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • Stankowich, T. & Romero, A. N. The correlated evolution of antipredator defences and brain size in mammals. Proc. R. Soc. B: Biol. Sci. 284, https://doi.org/10.1098/rspb.2016.1857 (2017).

  • Sheehan, Z. B. V., Kamhi, J. F., Seid, M. A. & Narendra, A. Differential investment in brain regions for a diurnal and nocturnal lifestyle in Australian Myrmecia ants. J. Comp. Neurol. 0, https://doi.org/10.1002/cne.24617.

  • Bauchot, R. & Stephan, H. Données nouvelles sur l’encéphalisation des insectivores et des prosimiens. Mammalia 30, 160–196, https://doi.org/10.1515/mamm.1966.30.1.160 (1966).

    Article 

    Google Scholar 

  • Rosenzweig, M. & Bennett, E. L. Effects of differential environments on brain weights and enzyme activities in gerbils, rats, and mice. Dev. Psychobiol. 2, 87–95, https://doi.org/10.1002/dev.420020208 (1969).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • Pirlot, P. & Stephan, H. Encephalization in Chiroptera. Can. J. Zool. 48, 433–444, https://doi.org/10.1139/z70-075 (1970).

    Article 

    Google Scholar 

  • Ashwell, K. W. S. Encephalization of Australian and New Guinean marsupials. Brain Behav. Evol. 71, 181–199, https://doi.org/10.1159/000114406 (2008).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • Hoops, D. et al. Evidence for concerted and mosaic brain evolution in dragon lizards. Brain Behav. Evol. 90, 211–223, https://doi.org/10.1159/000478738 (2017).

    Article 
    PubMed 

    Google Scholar 

  • Pasquet, A., Toscani, C. & Anotaux, M. Influence of aging on brain and web characteristics of an orb web spider. J. Ethol. 36, 85–91, https://doi.org/10.1007/s10164-017-0530-z (2018).

    Article 
    PubMed 

    Google Scholar 

  • Warnke, P. Mitteilung neuer Gehirn-und Körpergewichtsbestimmungen bei Saugern. J. Psychol. Neurol. 13, 355–403 (1908).

    Google Scholar 

  • Naccarati, S. On the relation between the weight of the internal secretory glands and the body weight and brain weight. Anat. Rec. 24, 254–260, https://doi.org/10.1002/ar.1090240408 (1922).

    Article 

    Google Scholar 

  • Crile, G. & Quiring, D. P. A record of the body weight and certain organ and gland weights of 3690 animals. Ohio J. Sci. (1940).

  • Franklin, D. C., Garnett, S. T., Luck, G. W., Gutierrez-Ibanez, C. & Iwaniuk, A. N. Relative brain size in Australian birds. Emu 114, 160–170, https://doi.org/10.1071/MU13034 (2014).

    Article 

    Google Scholar 

  • Hrdlička, A. Weight of the brain and of the internal organs in American monkeys. With data on brain weight in other apes. Am. J. Phys. Anthropol. 8, 201–211, https://doi.org/10.1002/ajpa.1330080207 (1925).

    Article 

    Google Scholar 

  • Stöckl, A. L., Ribi, W. A. & Warrant, E. J. Adaptations for nocturnal and diurnal vision in the hawkmoth lamina. J. Comp. Neurol. 524, 160–175, https://doi.org/10.1002/cne.23832 (2016).

    Article 
    PubMed 

    Google Scholar 

  • Napiorkowska, T. & Kobak, J. The allometry of the central nervous system during the postembryonic development of the spider Eratigena atrica. Arthropod Struct. Dev. 46, 805–814, https://doi.org/10.1016/j.asd.2017.08.005 (2017).

    Article 
    PubMed 

    Google Scholar 

  • El Jundi, B., Huetteroth, W., Kurylas, A. E. & Schachtner, J. Anisometric brain dimorphism revisited: Implementation of a volumetric 3D standard brain in Manduca sexta. J. Comp. Neurol. 517, 210–225, https://doi.org/10.1002/cne.22150 (2009).

    Article 
    PubMed 

    Google Scholar 

  • Krieger, J., Sandeman, R. E., Sandeman, D. C., Hansson, B. S. & Harzsch, S. Brain architecture of the largest living land arthropod, the Giant Robber Crab Birgus latro (Crustacea, Anomura, Coenobitidae): evidence for a prominent central olfactory pathway? Front. Zool. 7, 25, https://doi.org/10.1186/1742-9994-7-25 (2010).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Powell, B. J. & Leal, M. Brain Organization and Habitat Complexity in Anolis Lizards. Brain Behav. Evol. 84, 8–18, https://doi.org/10.1159/000362197 (2014).

    Article 
    PubMed 

    Google Scholar 

  • Platel, R. in Biology of the Reptilia 10 (eds Gans, C. G., Northcutt, R. G & Ulinski, P. S.) 147–171 (Academic Press, 1979).

  • Van Der Woude, E., Smid, H. M., Chittka, L. & Huigens, M. E. Breaking Haller’s rule: brain-body size isometry in a minute parasitic wasp. Brain Behav. Evol. 81, 86–92, https://doi.org/10.1159/000345945 (2013).

    Article 
    PubMed 

    Google Scholar 

  • Guay, P.-J. & Iwaniuk, A. N. Captive breeding reduces brain volume in waterfowl (Anseriformes). Condor 110, 276–284, https://doi.org/10.1525/cond.2008.8424 (2008).

    Article 

    Google Scholar 

  • Robinson, C. D., Patton, M. S., Andre, B. M. & Johnson, M. A. Convergent evolution of brain morphology and communication modalities in lizards. Current Zoology 61, 281–291, https://doi.org/10.1093/czoolo/61.2.281 (2015).

    Article 

    Google Scholar 

  • Kvello, P., Løfaldli, B., Rybak, J., Menzel, R. & Mustaparta, H. Digital, three-dimensional average shaped atlas of the Heliothis virescens brain with integrated gustatory and olfactory neurons. Front. Syst. Neurosci. 3, https://doi.org/10.3389/neuro.06.014.2009 (2009).

  • Montgomery, S. H. & Merrill, R. M. Divergence in brain composition during the early stages of ecological specialization in Heliconius butterflies. J. Evol. Biol. 30, 571–582, https://doi.org/10.1111/jeb.13027 (2017).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • Gordon, D. G., Zelaya, A., Arganda-Carreras, I., Arganda, S. & Traniello, J. F. A. Division of labor and brain evolution in insect societies: Neurobiology of extreme specialization in the turtle ant Cephalotes varians. PLOS ONE 14, e0213618, https://doi.org/10.1371/journal.pone.0213618 (2019).

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Rein, K., Zöckler, M., Mader, M. T., Grübel, C. & Heisenberg, M. The Drosophila Standard Brain. Curr. Biol. 12, 227–231, https://doi.org/10.1016/S0960-9822(02)00656-5 (2002).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • Shen, J.-M., Li, R.-D. & Gao, F.-Y. Effects of ambient temperature on lipid and fatty acid composition in the oviparous lizards, Phrynocephalus przewalskii. Comp. Biochem. Physiol. B: Biochem. Mol. Biol. 142, 293–301, https://doi.org/10.1016/j.cbpb.2005.07.013 (2005).

    CAS 
    Article 

    Google Scholar 

  • Muscedere, M. L., Gronenberg, W., Moreau, C. S. & Traniello, J. F. A. Investment in higher order central processing regions is not constrained by brain size in social insects. Proc. R. Soc. B: Biol. Sci. 281, https://doi.org/10.1098/rspb.2014.0217 (2014).

  • Platel, R. L’encéphalisation chez le Tuatara de Nouvelle-Zélande Sphenodon punctatus Gray (Lepidosauria, Sphenodonta). Etude quantifiée des principales subdivisions encéphaliques. J. Hirnforsch. 30, 325–337 (1989).

    CAS 
    PubMed 

    Google Scholar 

  • Makarova, A. A. & Polilov, A. A. Peculiarities of the brain organization and fine structure in small insects related to miniaturization. 1. The smallest Coleoptera (Ptiliidae). Entomol. Rev. 93, 703–713, https://doi.org/10.1134/S0013873813060043 (2013).

    Article 

    Google Scholar 

  • Bininda‐Emonds, O. R. P. Pinniped brain sizes. Mar. Mamm. Sci. 16, 469–481 (2000).

    Article 

    Google Scholar 

  • Stafstrom, J. A., Michalik, P. & Hebets, E. A. Sensory system plasticity in a visually specialized, nocturnal spider. Sci. Rep. 7, 46627, https://doi.org/10.1038/srep46627 (2017).

    ADS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • O’Donnell, S., Bulova, S. J., Barrett, M. & Fiocca, K. Size constraints and sensory adaptations affect mosaic brain evolution in paper wasps (Vespidae: Epiponini). Biol. J. Linn. Soc. 123, 302–310, https://doi.org/10.1093/biolinnean/blx150 (2018).

    Article 

    Google Scholar 

  • Kamhi, J. F., Gronenberg, W., Robson, S. K. A. & Traniello, J. F. A. Social complexity influences brain investment and neural operation costs in ants. Proc. R. Soc. B: Biol. Sci. 283, 20161949, https://doi.org/10.1098/rspb.2016.1949 (2016).

    Article 

    Google Scholar 

  • Kurylas, A. E., Rohlfing, T., Krofczik, S., Jenett, A. & Homberg, U. Standardized atlas of the brain of the desert locust, Schistocerca gregaria. Cell Tissue Res. 333, 125, https://doi.org/10.1007/s00441-008-0620-x (2008).

    Article 
    PubMed 

    Google Scholar 

  • O’Donnell, S. et al. A test of neuroecological predictions using paperwasp caste differences in brain structure (Hymenoptera: Vespidae). Behav. Ecol. Sociobiol. 68, 529–536, https://doi.org/10.1007/s00265-013-1667-6 (2014).

    Article 

    Google Scholar 

  • Weltzien, P. & Barth, F. G. Volumetric measurements do not demonstrate that the spider brain “central body” has a special role in web building. J. Morphol. 208, 91–98, https://doi.org/10.1002/jmor.1052080104 (1991).

    Article 
    PubMed 

    Google Scholar 


  • Source: Ecology - nature.com

    Cracking the case of Arctic sea ice breakup

    Removal of organic matter and nutrients from hospital wastewater by electro bioreactor coupled with tubesettler