in

Antifouling coatings can reduce algal growth while preserving coral settlement

  • Gardner, T. A., Côté, I. M., Gill, J. A., Grant, A. & Watkinson, A. R. Long-term region-wide declines in Caribbean corals. Science 301, 958–960 (2003).

    ADS 
    PubMed 
    Article 

    Google Scholar 

  • Bruno, J. F. & Selig, E. R. Regional decline of coral cover in the Indo-Pacific: Timing, extent, and subregional comparisons. PLoS ONE 2, e711 (2007).

    ADS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • De’Ath, G., Fabricius, K. E., Sweatman, H. & Puotinen, M. The 27-year decline of coral cover on the Great Barrier Reef and its causes. Proc. Natl. Acad. Sci. U. S. A. 109, 17995–17999 (2012).

    ADS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Hughes, T. P., Graham, N. A. J., Jackson, J. B. C., Mumby, P. J. & Steneck, R. S. Rising to the challenge of sustaining coral reef resilience. Trends Ecol. Evol. 25, 633–642 (2010).

    PubMed 
    Article 

    Google Scholar 

  • Pandolfi, J. M., Connolly, S. R., Marshall, D. J. & Cohen, A. L. Projecting coral reef futures under global warming and ocean acidification. Science 333, 418–422 (2011).

    ADS 
    PubMed 
    Article 

    Google Scholar 

  • Hughes, T. P. et al. Global warming and recurrent mass bleaching of corals. Nature 543, 373–377 (2017).

    ADS 
    PubMed 
    Article 

    Google Scholar 

  • Bindoff, N. L. et al. Chapter 5: Changing Ocean, Marine Ecosystems, and Dependent Communities. IPCC Special Report on the Ocean and Cryosphere in a Changing Climate (2019).

  • Richmond, R. H. Reproduction and recruitment in corals: Critical links in the persistence of reefs. In Life and Death of Coral Reefs (ed. Birkeland, C. E.) 175–197 (Springer, 1997).

    Chapter 

    Google Scholar 

  • Trapon, M. L., Pratchett, M. S., Hoey, A. S. & Baird, A. H. Influence of fish grazing and sedimentation on the early post-settlement survival of the tabular coral Acropora cytherea. Coral Reefs 32, 1051–1059 (2013).

    ADS 
    Article 

    Google Scholar 

  • Gallagher, C. & Doropoulos, C. Spatial refugia mediate juvenile coral survival during coral–predator interactions. Coral Reefs 36, 51–61 (2017).

    ADS 
    Article 

    Google Scholar 

  • Vermeij, M. J. A. & Sandin, S. A. Density-dependent settlement and mortality structure the earliest life phases of a coral population. Ecology 89, 1994–2004 (2008).

    PubMed 
    Article 

    Google Scholar 

  • Vermeij, M. J. A., Smith, J. E., Smith, C. M., Vega Thurber, R. & Sandin, S. A. Survival and settlement success of coral planulae: Independent and synergistic effects of macroalgae and microbes. Oecologia 159, 325–336 (2009).

    ADS 
    PubMed 
    Article 

    Google Scholar 

  • Ricardo, G. F., Jones, R. J., Nordborg, M. & Negri, A. P. Settlement patterns of the coral Acropora millepora on sediment-laden surfaces. Sci. Total Environ. 609, 277–288 (2017).

    ADS 
    PubMed 
    Article 

    Google Scholar 

  • Brunner, C. A., Uthicke, S., Ricardo, G. F., Hoogenboom, M. O. & Negri, A. P. Climate change doubles sedimentation-induced coral recruit mortality. Sci. Total Environ. 768, 143897 (2021).

    ADS 
    PubMed 
    Article 

    Google Scholar 

  • Birrell, C. L., McCook, L. J., Willis, B. L. & Diaz-Pulido, G. A. Effects of benthic algae on the replenishment of corals and the implications for the resilience of coral reefs. In Oceanography and Marine Biology: An Annual Review 25–63 (CRC Press, 2008).

    Chapter 

    Google Scholar 

  • Karcher, D. B. et al. Nitrogen eutrophication particularly promotes turf algae in coral reefs of the central Red Sea. PeerJ 2020, 1–25 (2020).

    Google Scholar 

  • Kirschner, C. M. & Brennan, A. B. Bio-inspired antifouling strategies. Annu. Rev. Mater. Res. 42, 211–229 (2012).

    ADS 
    Article 

    Google Scholar 

  • Webster, N. S. et al. Metamorphosis of a scleractinian coral in response to microbial biofilms. Appl. Environ. Microbiol. 70, 1213–1221 (2004).

    ADS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Heyward, A. J. & Negri, A. P. Natural inducers for coral larval metamorphosis. Coral Reefs 18, 273–279 (1999).

    Article 

    Google Scholar 

  • Negri, A. P., Webster, N. S., Hill, R. T. & Heyward, A. J. Metamorphosis of broadcast spawning corals in response to bacteria isolated from crustose algae. Mar. Ecol. Prog. Ser. 223, 121–131 (2001).

    ADS 
    Article 

    Google Scholar 

  • Tebben, J. et al. Induction of larval metamorphosis of the coral Acropora millepora by tetrabromopyrrole isolated from a Pseudoalteromonas bacterium. PLoS ONE 6, 1–8 (2011).

    Article 

    Google Scholar 

  • Sneed, J. M., Sharp, K. H., Ritchie, K. B. & Paul, V. J. The chemical cue tetrabromopyrrole from a biofilm bacterium induces settlement of multiple Caribbean corals. Proc. R. Soc. B Biol. Sci. 281, 1–9 (2014).

    Google Scholar 

  • Tebben, J. et al. Chemical mediation of coral larval settlement by crustose coralline algae. Sci. Rep. 5, 1–11 (2015).

    Article 

    Google Scholar 

  • Carpenter, R. C. & Edmunds, P. J. Local and regional scale recovery of Diadema promotes recruitment of scleractinian corals. Ecol. Lett. 9, 268–277 (2006).

    Article 

    Google Scholar 

  • Box, S. J. & Mumby, P. J. Effect of macroalgal competition on growth and survival of juvenile Caribbean corals. Mar. Ecol. Prog. Ser. 342, 139–149 (2007).

    ADS 
    Article 

    Google Scholar 

  • Linares, C., Cebrian, E. & Coma, R. Effects of turf algae on recruitment and juvenile survival of gorgonian corals. Mar. Ecol. Prog. Ser. 452, 81–88 (2012).

    ADS 
    Article 

    Google Scholar 

  • McCook, L. J., Jompa, J. & Diaz-Pulido, G. Competition between corals and algae on coral reefs: A review of evidence and mechanisms. Coral Reefs 19, 400–417 (2001).

    ADS 
    Article 

    Google Scholar 

  • Nugues, M. M., Smith, G. W., Van Hooidonk, R. J., Seabra, M. I. & Bak, R. P. M. Algal contact as a trigger for coral disease. Ecol. Lett. 7, 919–923 (2004).

    Article 

    Google Scholar 

  • Fong, J. et al. Allelopathic effects of macroalgae on Pocillopora acuta coral larvae. Mar. Environ. Res. 151, 104745. https://doi.org/10.1016/j.marenvres.2019.06.007 (2019).

    Article 
    PubMed 

    Google Scholar 

  • Hauri, C., Fabricius, K. E., Schaffelke, B. & Humphrey, C. Chemical and physical environmental conditions underneath mat- and canopy-forming macroalgae, and their effects on understorey corals. PLoS ONE 5, 1–9 (2010).

    Article 

    Google Scholar 

  • Bay, L. K. et al. Reef Restoration and Adaptation Program : Intervention Technical Summary. A report provided to the Australian Government by the Reef Restoration and Adaptation Program. (2019).

  • Anthony, K. R. N. et al. Interventions to help coral reefs under global change—A complex decision challenge. PLoS ONE 15, 1–14 (2020).

    Article 

    Google Scholar 

  • Vardi, T. et al. Six priorities to advance the science and practice of coral reef restoration worldwide. Restor. Ecol. 29, 1–7 (2021).

    Article 

    Google Scholar 

  • Heyward, A. J., Rees, M. & Smith, L. D. Coral spawning slicks harnessed for large-scale coral culture. Progr. Abstr. Int. Conf. Sci. Asp. Coral Reef Assess. Monit. Restor. 104, 188–189 (1999).

    Google Scholar 

  • Harrison, P., Villanueva, R. & De la Cruz, D. Coral Reef Restoration using Mass Coral Larval Reseeding (Southern Cross University, 2016).

    Google Scholar 

  • de la Cruz, D. W. & Harrison, P. L. Enhancing coral recruitment through assisted mass settlement of cultured coral larvae. PLoS ONE 15, e0242847. https://doi.org/10.1371/journal.pone.0242847 (2020).

    Article 

    Google Scholar 

  • Chamberland, V. F., Snowden, S., Marhaver, K. L., Petersen, D. & Vermeij, M. J. A. The reproductive biology and early life ecology of a common Caribbean brain coral, Diploria labyrinthiformis (Scleractinia: Faviinae). Coral Reefs 36, 83–94 (2017).

    ADS 
    Article 

    Google Scholar 

  • Randall, C. J. et al. Sexual production of corals for reef restoration in the Anthropocene. Mar. Ecol. Prog. Ser. 635, 203–232 (2020).

    ADS 
    Article 

    Google Scholar 

  • Miller, M. W. et al. Settlement yields in large-scale in situ culture of Caribbean coral larvae for restoration. Restor. Ecol. https://doi.org/10.1111/rec.13512 (2021).

    Article 

    Google Scholar 

  • Baria-Rodriguez, M. V., de la Cruz, D. W., Dizon, R. M., Yap, H. T. & Villanueva, R. D. Performance and cost-effectiveness of sexually produced Acropora granulosa juveniles compared with asexually generated coral fragments in restoring degraded reef areas. Aquat. Conserv. Mar. Freshw. Ecosyst. 29, 891–900 (2019).

    Article 

    Google Scholar 

  • Doropoulos, C., Elzinga, J., ter Hofstede, R., van Koningsveld, M. & Babcock, R. C. Optimizing industrial-scale coral reef restoration: Comparing harvesting wild coral spawn slicks and transplanting gravid adult colonies. Restor. Ecol. 27, 758–767 (2019).

    Article 

    Google Scholar 

  • Kuffner, I. B., Andersson, A. J., Jokiel, P. L., Rodgers, K. S. & MacKenzie, F. T. Decreased abundance of crustose coralline algae due to ocean acidification. Nat. Geosci. 1, 114–117 (2008).

    ADS 
    Article 

    Google Scholar 

  • Webster, N. S., Uthicke, S., Botté, E. S., Flores, F. & Negri, A. P. Ocean acidification reduces induction of coral settlement by crustose coralline algae. Glob. Change Biol. 19, 303–315 (2013).

    ADS 
    Article 

    Google Scholar 

  • Randall, C. J., Giuliano, C., Heyward, A. J. & Negri, A. P. Enhancing coral survival on deployment devices with microrefugia. Front. Mar. Sci. 8, 662263. https://doi.org/10.3389/fmars.2021.662263 (2021).

    Article 

    Google Scholar 

  • Kuffner, I. B. et al. Inhibition of coral recruitment by macroalgae and cyanobacteria. Mar. Ecol. Prog. Ser. 323, 107–117 (2006).

    ADS 
    Article 

    Google Scholar 

  • Arnold, S. N., Steneck, R. S. & Mumby, P. J. Running the gauntlet: Inhibitory effects of algal turfs on the processes of coral recruitment. Mar. Ecol. Prog. Ser. 414, 91–105 (2010).

    ADS 
    Article 

    Google Scholar 

  • Speare, K. E., Duran, A., Miller, M. W. & Burkepile, D. E. Sediment associated with algal turfs inhibits the settlement of two endangered coral species. Mar. Pollut. Bull. 144, 189–195 (2019).

    PubMed 
    Article 

    Google Scholar 

  • Tebben, J., Guest, J. R., Sin, T. M., Steinberg, P. D. & Harder, T. Corals like it waxed: Paraffin-based antifouling technology enhances coral spat survival. PLoS ONE 9, 1–8 (2014).

    Article 

    Google Scholar 

  • Almeida, E., Diamantino, T. C. & de Sousa, O. Marine paints: The particular case of antifouling paints. Prog. Org. Coat. 59, 2–20 (2007).

    Article 

    Google Scholar 

  • Negri, A. P., Smith, L. D., Webster, N. S. & Heyward, A. J. Understanding ship-grounding impacts on a coral reef: Potential effects of anti-foulant paint contamination on coral recruitment. Mar. Pollut. Bull. 44, 111–117 (2002).

    PubMed 
    Article 

    Google Scholar 

  • Smith, L. D., Negri, A. P., Philipp, E., Webster, N. S. & Heyward, A. J. The effects of antifoulant-paint-contaminated sediments on coral recruits and branchlets. Mar. Biol. 143, 651–657 (2003).

    Article 

    Google Scholar 

  • Jacobson, A. H. & Willingham, G. L. Sea-nine antifoulant: An environmentally acceptable alternative to organotin antifoulants. Sci. Total Environ. 258, 103–110 (2000).

    ADS 
    PubMed 
    Article 

    Google Scholar 

  • Silva, V. et al. Isothiazolinone biocides: Chemistry, biological, and toxicity profiles. Molecules 25, 991. https://doi.org/10.3390/molecules25040991 (2020).

    Article 
    PubMed Central 

    Google Scholar 

  • da Silva, A. R., da Guerreiro, A. S., Martins, S. E. & Sandrini, J. Z. DCOIT unbalances the antioxidant defense system in juvenile and adults of the marine bivalve Amarilladesma mactroides (Mollusca: Bivalvia). Comp. Biochem. Physiol. Part C 250, 109169 (2021).

    Google Scholar 

  • Cima, F. et al. Preliminary evaluation of the toxic effects of the antifouling biocide Sea-Nine 211TM in the soft coral Sarcophyton cf. glaucum (Octocorallia, Alcyonacea) based on PAM fluorometry and biomarkers. Mar. Environ. Res. 83, 16–22 (2013).

    PubMed 
    Article 

    Google Scholar 

  • Wendt, I., Backhaus, T., Blanck, H. & Arrhenius, Å. The toxicity of the three antifouling biocides DCOIT, TPBP and medetomidine to the marine pelagic copepod Acartia tonsa. Ecotoxicology 25, 871–879 (2016).

    PubMed 
    Article 

    Google Scholar 

  • Chen, L. et al. Identification of molecular targets for 4,5-dichloro-2-n-octyl-4-isothiazolin-3-one (DCOIT) in teleosts: New insight into mechanism of toxicity. Environ. Sci. Technol. 51, 1840–1847 (2017).

    ADS 
    PubMed 
    Article 

    Google Scholar 

  • Martins, S. E., Fillmann, G., Lillicrap, A. & Thomas, K. V. Review: Ecotoxicity of organic and organo-metallic antifouling co-biocides and implications for environmental hazard and risk assessments in aquatic ecosystems. Biofouling 34, 34–52 (2018).

    PubMed 
    Article 

    Google Scholar 

  • Moon, Y. S., Kim, M., Hong, C. P., Kang, J. H. & Jung, J. H. Overlapping and unique toxic effects of three alternative antifouling biocides (Diuron, Irgarol 1051 ®, Sea-Nine 211 ® ) on non-target marine fish. Ecotoxicol. Environ. Saf. 180, 23–32 (2019).

    PubMed 
    Article 

    Google Scholar 

  • Su, Y. et al. Toxicity of 4,5-dichloro-2-n-octyl-4-isothiazolin-3-one (DCOIT) in the marine decapod Litopenaeus vannamei. Environ. Pollut. 251, 708–716 (2019).

    PubMed 
    Article 

    Google Scholar 

  • Fonseca, V. B., da Guerreiro, A. S., Vargas, M. A. & Sandrini, J. Z. Effects of DCOIT (4,5-dichloro-2-octyl-4-isothiazolin-3-one) to the haemocytes of mussels Perna perna. Comp. Biochem. Physiol Part C 232, 108737. https://doi.org/10.1016/j.cbpc.2020.108737 (2020).

    Article 

    Google Scholar 

  • Ferreira, V. et al. Effects of nanostructure antifouling biocides towards a coral species in the context of global changes. Sci. Total Environ. 799, 149324 (2021).

    ADS 
    PubMed 
    Article 

    Google Scholar 

  • de Campos, B. G. et al. A preliminary study on multi-level biomarkers response of the tropical oyster Crassostrea brasiliana to exposure to the antifouling biocide DCOIT. Mar. Pollut. Bull. 174, 112141 (2022).

    Article 

    Google Scholar 

  • Maia, F. et al. Incorporation of biocides in nanocapsules for protective coatings used in maritime applications. Chem. Eng. J. 270, 150–157 (2015).

    Article 

    Google Scholar 

  • Santos, J. V. N. et al. Can encapsulation of the biocide DCOIT affect the anti-fouling efficacy and toxicity on tropical bivalves?. Appl. Sci. 10, 1–12 (2020).

    Article 

    Google Scholar 

  • Detty, M. R., Ciriminna, R., Bright, F. V. & Pagliaro, M. Environmentally benign sol-gel antifouling and foul-releasing coatings. Acc. Chem. Res. 47, 678–687 (2014).

    PubMed 
    Article 

    Google Scholar 

  • Korschelt, K., Tahir, M. N. & Tremel, W. A Step into the future: Applications of nanoparticle enzyme mimics. Chemistry 24, 9703–9713 (2018).

    PubMed 
    Article 

    Google Scholar 

  • Herget, K. et al. Haloperoxidase mimicry by CeO2-x nanorods combats biofouling. Adv. Mater. 29, 1–8 (2017).

    Article 

    Google Scholar 

  • Korschelt, K. et al. CeO2-: X nanorods with intrinsic urease-like activity. Nanoscale 10, 13074–13082 (2018).

    PubMed 
    Article 

    Google Scholar 

  • Herget, K., Frerichs, H., Pfitzner, F., Tahir, M. N. & Tremel, W. Functional enzyme mimics for oxidative halogenation reactions that combat biofilm formation. Adv. Mater. 30, 1–28 (2018).

    Article 

    Google Scholar 

  • Doropoulos, C., Ward, S., Marshell, A., Diaz-Pulido, G. & Mumby, P. J. Interactions among chronic and acute impacts on coral recruits: The importance of size-escape thresholds. Ecology 93, 2131–2138 (2012).

    PubMed 
    Article 

    Google Scholar 

  • Ji, Z. et al. Designed synthesis of CeO2 nanorods and nanowires for studying toxicological effects of high aspect ratio nanomaterials. ACS Nano 6, 5366–5380 (2012).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Herget, K. et al. Supporting Information: Haloperoxidase mimicry by CeO2-x nanorods combats biofouling. Adv. Mater. 29, 1603823 (2017).

    Article 

    Google Scholar 

  • Sokolova, A. et al. Spontaneous multiscale phase separation within fluorinated xerogel coatings for fouling-release surfaces. Biofouling 28, 143–157 (2012).

    PubMed 
    Article 

    Google Scholar 

  • Schneider, C. A., Rasband, W. S. & Eliceiri, K. W. NIH Image to ImageJ: 25 years of image analysis. Nat. Methods 9, 671–675 (2012).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • ImageJ Release Notes. https://imagej.nih.gov/ij/notes.html.

  • Arganda-Carreras, I. et al. Trainable Weka Segmentation: A machine learning tool for microscopy pixel classification. Bioinformatics 33, 2424–2426 (2017).

    PubMed 
    Article 

    Google Scholar 

  • Arganda-Carreras, I. et al. Supplementary Data: Trainable Weka Segmentation: A Machine Learning Tool for Microscopy Pixel Classification: Trainable Weka Segmentation User Manualhttps://doi.org/10.1093/bioinformatics/btx180 (2017).

  • Vyas, N., Sammons, R. L., Addison, O., Dehghani, H. & Walmsley, A. D. A quantitative method to measure biofilm removal efficiency from complex biomaterial surfaces using SEM and image analysis. Sci. Rep. 6, 2–11 (2016).

    Article 

    Google Scholar 

  • Carbone, D. A., Gargano, I., Pinto, G., De Natale, A. & Pollio, A. Evaluating microalgae attachment to surfaces: A first approach towards a laboratory integrated assessment. Chem. Eng. Trans. 57, 73–78 (2017).

    Google Scholar 

  • Moreno Osorio, J. H. et al. Early colonization stages of fabric carriers by two Chlorella strains. J. Appl. Phycol. 32, 3631–3644 (2020).

    Article 

    Google Scholar 

  • Ricardo, G. F. et al. Impacts of water quality on Acropora coral settlement: The relative importance of substrate quality and light. Sci. Total Environ. 777, 146079. https://doi.org/10.1016/j.scitotenv.2021.146079 (2021).

    ADS 
    Article 
    PubMed 

    Google Scholar 

  • Macadam, A., Nowell, C. J. & Quigley, K. Machine learning for the fast and accurate assessment of fitness in coral early life history. Remote Sens. 13, 1–17 (2021).

    Article 

    Google Scholar 

  • Negri, A. P. & Heyward, A. J. Inhibition of Fertilization and Larval Metamorphosis of the Coral Acropora millepora (Ehrenberg, 1834) by Petroleum Products. Mar. Pollut. Bull. 41, 420–427 (2000).

    Article 

    Google Scholar 

  • Nordborg, F. M., Flores, F., Brinkman, D. L., Agustí, S. & Negri, A. P. Phototoxic effects of two common marine fuels on the settlement success of the coral Acropora tenuis. Sci. Rep. 8, 1–12 (2018).

    Article 

    Google Scholar 

  • R Core Team. R: A Language and Environment for Statistical Computing. (2021).

  • Wickham, H. et al. Welcome to the Tidyverse. J. Open Source Softw. 4, 1686. https://doi.org/10.21105/joss.01686 (2019).

    ADS 
    Article 

    Google Scholar 

  • Pinheiro, J., Bates, D., Debroy, S., Sarkar, D. & R Core Team. Linear and nonlinear mixed effects models contact. Linear nonlinear Mix. Eff. Model. 3, 103–135 (2021).

    Google Scholar 

  • Fox, J. & Weisberg, S. An R Companion to Applied Regression (Sage Publications, 2019).

    Google Scholar 

  • Lenth, R. V. Emmeans: Estimated Marginal Means. https://cran.r-project.org/package=emmeans (2021).

  • Brooks, M. E. et al. glmmTMB balances speed and flexibility among packages for zero-inflated generalized linear mixed modeling. R J. 9, 378–400 (2017).

    Article 

    Google Scholar 

  • Dafforn, K. A., Lewis, J. A. & Johnston, E. L. Antifouling strategies: History and regulation, ecological impacts and mitigation. Mar. Pollut. Bull. 62, 453–465 (2011).

    PubMed 
    Article 

    Google Scholar 

  • Wu, R. et al. Room temperature synthesis of defective cerium oxide for efficient marine anti-biofouling. Adv. Compos. Hybrid Mater. https://doi.org/10.1007/s42114-021-00256-7 (2021).

    Article 

    Google Scholar 

  • Hu, M. et al. Nanozymes in nanofibrous mats with haloperoxidase-like activity to combat biofouling. ACS Appl. Mater. Interfaces 10, 44722–44730 (2018).

    PubMed 
    Article 

    Google Scholar 

  • He, X. et al. Haloperoxidase mimicry by CeO2-x nanorods of different aspect ratios for antibacterial performance. ACS Sustain. Chem. Eng. 8, 6744–6752 (2020).

    Article 

    Google Scholar 

  • Saxena, P. & Harish,. Nanoecotoxicological reports of engineered metal oxide nanoparticles on algae. Curr. Pollut. Rep. 4, 128–142 (2018).

    Article 

    Google Scholar 

  • Xu, Y. et al. Effects of cerium oxide nanoparticles on bacterial growth and behaviors: Induction of biofilm formation and stress response. Environ. Sci. Pollut. Res. 26, 9293–9304 (2019).

    Article 

    Google Scholar 

  • Xu, Y. et al. Mechanistic understanding of cerium oxide nanoparticle-mediated biofilm formation in Pseudomonas aeruginosa. Environ. Sci. Pollut. Res. 25, 34765–34776 (2018).

    Article 

    Google Scholar 

  • Tang, Y. et al. Hybrid xerogel films as novel coatings for antifouling and fouling release. Biofouling 21, 59–71 (2005).

    PubMed 
    Article 

    Google Scholar 

  • Gunari, N. et al. The control of marine biofouling on xerogel surfaces with nanometer-scale topography. Biofouling 27, 137–149 (2011).

    PubMed 
    Article 

    Google Scholar 

  • Maia, F. et al. Silica nanocontainers for active corrosion protection. Nanoscale 4, 1287–1298 (2012).

    ADS 
    PubMed 
    Article 

    Google Scholar 

  • Martins, R. et al. Effects of a novel anticorrosion engineered nanomaterial on the bivalve: Ruditapes philippinarum. Environ. Sci. Nano 4, 1064–1076 (2017).

    Article 

    Google Scholar 

  • Gutner-Hoch, E. et al. Antimacrofouling efficacy of innovative inorganic nanomaterials loaded with booster biocides. J. Mar. Sci. Eng. 6, 15. https://doi.org/10.3390/jmse6010006 (2018).

    Article 

    Google Scholar 

  • Negri, A. P. & Heyward, A. J. Inhibition of coral fertilisation and larval metamorphosis by tributyltin and copper. Mar. Environ. Res. 51, 17–27 (2001).

    PubMed 
    Article 

    Google Scholar 

  • Morse, D. E., Hooker, N., Morse, A. N. C. & Jensen, R. A. Control of larval metamorphosis and recruitment in sympatric agariciid corals. J. Exp. Mar. Biol. Ecol. 116, 193–217 (1988).

    Article 

    Google Scholar 

  • Harrington, L., Fabricius, K., De’ath, G. & Negri, A. Recognition and selection of settlement substrata determine post-settlement survival in corals. Ecology 85, 3428–3437 (2004).

    Article 

    Google Scholar 

  • Jorissen, H., Baumgartner, C., Steneck, R. S. & Nugues, M. M. Contrasting effects of crustose coralline algae from exposed and subcryptic habitats on coral recruits. Coral Reefs 39, 1767–1778 (2020).

    Article 

    Google Scholar 

  • Figueiredo, J. et al. Toxicity of innovative anti-fouling nano-based solutions to marine species. Environ. Sci. Nano 6, 1418–1429 (2019).

    Article 

    Google Scholar 

  • Shafir, S., Abady, S. & Rinkevich, B. Improved sustainable maintenance for mid-water coral nursery by the application of an anti-fouling agent. J. Exp. Mar. Biol. Ecol. 368, 124–128 (2009).

    Article 

    Google Scholar 


  • Source: Ecology - nature.com

    Dynamics of microbial community and enzyme activities during preparation of Agaricus bisporus compost substrate

    Environmental conditions experienced upon first breeding modulate costs of early breeding but not age-specific reproductive output in peregrine falcons