in

Apex scavengers from different European populations converge at threatened savannah landscapes

  • Skarpe, C. Dynamics of savanna ecosystems. J. Veg. Sci. 3, 293–300 (1992).

    Google Scholar 

  • Solbrig, O. T. The diversity of the savanna ecosystem. In Biodiversity and Savanna Ecosystem Processes: A Global Perspective Vol. 21 (eds Solbrig, O. T. et al.) 1–27 (Springer, Berlin, 1996).

    Google Scholar 

  • Fynn, R. W. S., Augustine, D. J., Peel, M. J. S. & de Garine-Wichatitsky, M. Strategic management of livestock to improve biodiversity conservation in African savannahs: A conceptual basis for wildlife–livestock coexistence. J Appl Ecol 53, 388–397 (2016).

    Google Scholar 

  • Turner, M. D. & Schlecht, E. Livestock mobility in sub-Saharan Africa: A critical review. Pastoralism 9, 13 (2019).

    Google Scholar 

  • Moreno, G. et al. Exploring the causes of high biodiversity of Iberian dehesas: The importance of wood pastures and marginal habitats. Agrofor. Syst. 90, 87–105 (2015).

    Google Scholar 

  • Spiegel, O. et al. Moving beyond curve fitting: Using complementary data to assess alternative explanations for long movements of three vulture species. Am. Nat. 185, E44–E54 (2015).

    Google Scholar 

  • Houston, D. C. Food searching behaviour in griffon vultures. Afr. J. Ecol. 12, 63–77 (1974).

    Google Scholar 

  • Fryxell, J. M. & Sinclair, A. R. E. Causes and Consequences of Migration by Large Herbivores. Trens Ecol. Evol. 3, 237–241 (1988).

    CAS 

    Google Scholar 

  • Joly, K. et al. Longest terrestrial migrations and movements around the world. Sci. Rep. 9, 15333 (2019).

    ADS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Naveh, Z. Mediterranean ecosystems and vegetation types in California and Israel. In Transdisciplinary Challenges in Landscape Ecology and Restoration Ecology. Landscape Series, vol 6. (Springer, Dordrecht, 1967), vol 48, pp. 445–459.

  • Pereira, P. M. & Pires da Fonseca, M. Nature vs. nurture: The making of the montado ecosystem. Conserv. Ecol. 7, 7 (2003).

    Google Scholar 

  • Blondel, J. The ‘design’ of Mediterranean landscapes: A millennial story of humans and ecological systems during the historic period. Hum. Ecol. 34, 713–729 (2006).

    Google Scholar 

  • Díaz, M., Campos, P. & Pulido, F. J. The Spanish dehesas: A diversity of land use and wildlife. In Farming and birds in Europe: The Common Agricultural Policy and its implications for bird conservation (eds Pain, D. & Pienkowski, M.) 178–209 (Academic Press, London, 1997).

    Google Scholar 

  • Campos, P. et al. Mediterranean Oak Woodland Working Landscapes: Dehesas of Spain and Ranchlands of California (Springer, 2013).

    Google Scholar 

  • Plieninger, T. & Bieling, C. Resilience and the Cultural Landscape: Understanding and Managing Change in Human-Shaped Environments (Cambridge University Press, 2012).

    Google Scholar 

  • Lomba, A. et al. Back to the future: Rethinking socioecological systems underlying high nature value farmlands. Front. Ecol. Environ. 18, 36–42 (2020).

    Google Scholar 

  • Ogada, D. et al. Another continental vulture crisis: Africa’s vultures collapsing toward extinction. Conserv. Lett. 9, 89–97 (2016).

    ADS 

    Google Scholar 

  • Buechely, E. & Şekercioğlu, Ç. H. The avian scavenger crisis: Looming extinctions, trophic cascades, and loss of critical ecosystem functions. Biol. Conserv. 198, 220–228 (2016).

    Google Scholar 

  • Safford, R. et al. Vulture conservation: The case for urgent action. Bird Conserv. Int. 29, 1–9 (2019).

    Google Scholar 

  • García-Alfonso, M., Donázar, J. A., Serrano, D. Individual and environmental drivers of resource use in endangered vulture: Integrating movement, spatial and social ecology. PhD Thesis. Universidad de Sevilla, Seville, Spain.

  • Ogada, D. L., Keesing, F. & Virani, M. Z. Dropping dead: Causes and consequences of vulture population declines worldwide. Ann. NY Acad. Sci. 1249, 57–71 (2012).

    ADS 
    PubMed 

    Google Scholar 

  • Blanco, G., Cortés-Avizanda, A., Frías, Ó., Arrondo, E. & Donázar, J. A. Livestock farming practices modulate vulture diet-disease interactions. Glob. Ecol. 17, e00518 (2019).

    Google Scholar 

  • Olea, P. P., Mateo-Tomas, P. & Sánchez Zapata, J. A. Carrion Ecology and Management (Springer Nature, 2019).

    Google Scholar 

  • Montsarrat, S. et al. How predictability of feeding patches affects home range and foraging habitat selection in avian social scavengers?. PLoS ONE 8, e53077 (2013).

    ADS 

    Google Scholar 

  • Arrondo, E. et al. Invisible barriers: Differential sanitary regulations constrain vulture movements across country borders. Biol. Conserv. 219, 46–52 (2018).

    Google Scholar 

  • Houston, D. C. Breeding of the white-backed and Rüppell’s griffon vultures, Gyps africanus and G. rueppellii. Ibis 118, 14–40 (1976).

    Google Scholar 

  • Houston, D. C. A change in the breeding season of Rüppell’s griffon vultures Gyps rueppellii in the Serengeti in response to changes in ungulate populations. Ibis 132, 36–41 (1990).

    Google Scholar 

  • Kendall, C. J., Virani, M. Z., Hopcraft, J. G. C., Bildstein, K. L. & Rubenstein, D. I. African vultures don’t follow migratory herds: Scavenger habitat use is not mediated by prey abundance. PLoS ONE 9, e83470 (2014).

    ADS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Carrete, M. & Donázar, J. A. Application of central-place foraging theory shows the importance of Mediterranean dehesas for the conservation of the cinereous vulture, Aegypius monachus. Biol. Conserv. 126, 582–590 (2005).

    Google Scholar 

  • Martín-Díaz, P. et al. Rewilding processes shape the use of Mediterranean landscapes by an avian top scavenger. Sci. Rep. 10, 2853 (2020).

    ADS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Botha, A. et al. Multi-species action plan to conserve African-Eurasian vultures (vulture MSAP). CMS Raptors MOU Technical Publication 5, 2–162 (2017).

    Google Scholar 

  • Cortés-Avizanda, A. et al. Supplementary feeding and endangered avian scavengers: Benefits, caveats, and controversies. Front. Ecol. Environ. 14, 191–199 (2016).

    Google Scholar 

  • Fluhr, J., Benhamou, S., Riotte-Lambert, L. & Duriez, O. Assessing the risk for an obligate scavenger to be dependent on predictable feeding sources. Biol. Conserv. 215, 92–98 (2017).

    Google Scholar 

  • Schabo, D. G. et al. Long-term data indicates that supplementary food enhances the number of breeding pairs in a Cape Vulture Gyps coprotheres colony. Bird Conserv. Int. 27, 1–13 (2016).

    Google Scholar 

  • Louzao, M. et al. Conserving pelagic habitats: Seascape modelling of an oceanic predator. J. Appl. Ecol. 48, 121–132 (2011).

    Google Scholar 

  • Buechley, E. R. et al. Identifying critical migratory bottlenecks and high-use areas for an endangered migratory soaring bird across three continents. J. Avian Biol. 49, e01629 (2018).

    Google Scholar 

  • Morales-Reyes, Z. et al. Supplanting ecosystem services provided by scavengers raises greenhouse gas emissions. Sci. Rep. 5, 7811 (2015).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Mateo-Tomás, P., Olea, P. P., Moleón, M., Selva, N. & Sánchez-Zapata, J. A. Both rare and common species support ecosystem services in scavenger communities. Glob. Ecol. 26, 1459–1470 (2017).

    Google Scholar 

  • Aguilera-Alcalá, N., Morales-Reyes, Z., Martín-López, B., Moléon, M. & Sánchez-Zapata, J. A. Role of scavengers in providing non-material contributions to people. Ecol. Indic. 117, 106643 (2020).

    Google Scholar 

  • Margalida, A. et al. Uneven large-scale movement patterns in wild and reintroduced pre-adult bearded vultures: Conservation implications. PLoS ONE 8, e65857 (2013).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Griesinger, J. Juvenile dispersion and migration among Griffon Vultures Gyps fulvus in Spain. Holartic Birds of Prey (1998).

  • Plieninger, T. et al. Dehesas as high nature value farming systems: A social-ecological synthesis of drivers, pressures, state, impacts, and responses. Ecology 26, 23 (2021).

    Google Scholar 

  • Virani, M. Z., Monadjem, A., Thomsett, S. & Kendall, C. Seasonal variation in breeding Rüppell’s Vultures Gyps rueppellii at Kwenia, southern Kenya and implications for conservation. Bird. Conserv. Int. 22, 260–269 (2012).

    Google Scholar 

  • Morales-Reyes, Z. et al. Evaluation of the network of protection areas for the feeding of scavengers in Spain: From biodiversity conservation to greenhouse gas emission savings. J. Appl. Ecol. 54, 1120–1129 (2017).

    CAS 

    Google Scholar 

  • Mateo-Tomás, P. & Olea, P. When hunting benefits raptors: A case study of game species and vultures. Eur. J. Wildl. Res. 56, 519–528 (2010).

    Google Scholar 

  • Pereira, H. M. & Navarro, L. M. Rewilding European Landscapes (Springer, 2015).

    Google Scholar 

  • Margalida, A., Carrete, M., Sánchez-Zapata, J. A. & Donázar, J. A. Good news for European vultures. Science 335, 284 (2012).

    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Paredes, R. et al. Proximity to multiple foraging habitats enhances seabirds’ resilience to local food shortages. Mar. Ecol. Prog. Ser. 471, 253–269 (2012).

    ADS 

    Google Scholar 

  • Gomo, G., Mattisson, J., Hagen, B. R., Moa, P. F. & Willebrand, T. Scavenging on a pulsed resource. Quality matters for corvids but density for mammals. BMC Ecol. 17, 22 (2017).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Navarro, L. M. & Pereira, H. M. Rewilding abandoned landscapes in Europe. Ecosystems 15, 900–912 (2012).

    Google Scholar 

  • Arrondo, E. et al. Rewilding traditional grazing areas affects scavenger assemblages and carcass consumption patterns. Basic Appl. Ecol. 41, 56–66 (2019).

    Google Scholar 

  • Cortés-Avizanda, A., Donázar, J. A. & Pereira, H. M. Top scavengers in a wilder Europe. In Rewilding European Landscapes (eds Pereira, H. M. & Navarro, L.) 85–106 (Springer, Berlin, 2015).

    Google Scholar 

  • Harel, R. et al. Decision-making by a soaring bird: Time, energy and risk considerations at different spatio-temporal scales. Philos. Trans. R. Soc. B 371, 20150397 (2016).

    Google Scholar 

  • Austin, R. E. et al. A sex-influenced flexible foraging strategy in a tropical seabird, the magnificent frigatebird. Mar. Ecol. Prog. Ser. 611, 203–214 (2019).

    ADS 

    Google Scholar 

  • Weimerskirch, H., Cherel, Y., Cuenot-Chaillet, F. & Ridoux, V. Alternative foraging strategies and resource allocation by maIe and female wandering albatrosses. Ecology 78, 2051–2063 (1997).

    Google Scholar 

  • Gangoso, L. et al. Avian scavengers living in anthropized landscapes have shorter telomeres and higher levels of glucocorticoid hormones. Sci. Total Environ. 782, 146920 (2021).

    ADS 
    CAS 

    Google Scholar 

  • Lambertucci, S. A., Carrete, M., Donázar, J. A. & Hiraldo, F. Large-scale age-dependent skewed sex ratio in a sexually dimorphic avian scavenger. PLoS ONE 7, e46347 (2012).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Jackson, A. L., Ruxton, G. D. & Houston, D. C. The effect of social facilitation on foraging success in vultures: A modelling study. Biol. Lett. 4, 311–313 (2008).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Deygout, C., Gault, A., Duriez, O., Sarrazin, F. & Bessa-Gomes, C. Impact of food predictability on social facilitation by foraging scavengers. Behav. Ecol. 21, 1131–1139 (2010).

    Google Scholar 

  • Harel, R., Spiegel, O., Getz, W. M. & Nathan, R. Social foraging and individual consistency in following behaviour: Testing the information centre hypothesis in free-ranging vultures. Proc. R. Soc. B 284, 20162654 (2017).

    PubMed 
    PubMed Central 

    Google Scholar 

  • van Overveld, T. et al. Integrating vulture social behavior into conservation practice. The Condor 122, 1–20 (2020).

    Google Scholar 

  • Genero, F., Franchini, M., Fanin, Y. & Filacorda, S. Spatial ecology of non-breeding Eurasian Griffon Vultures Gyps fulvus in relation to natural and artificial food availability. Bird Study 67, 1–18 (2020).

    Google Scholar 

  • Sherub, S., Fiedler, W., Duriez, O. & Wikelski, M. Bio-Logging – New Technologies to study conservation physiology on the move: A case study on annual survival of Himalayan Vultures. J. Comp. Physiol. 203, 531–542 (2017).

    Google Scholar 

  • Olea, P. P. & Mateo-Tomás, P. The role of traditional farming practices in ecosystem conservation: The case of transhumance and vultures. Biol. Conserv. 142, 1844–1853 (2009).

    Google Scholar 

  • Aguilera-Alcalá, N. et al. The value of transhumance for biodiversity conservation: Vulture foraging in relation to livestock movements. (Ambio, 2021).

    Google Scholar 

  • Clement, V. Spanish wood pasture: Origin and durability of an historical wooded landscape in Mediterranean Europe. Environ. Hist. Camb. 14, 67–87 (2008).

    Google Scholar 

  • Arrondo, E. et al. Landscape anthropization shapes the survival of a top avian scavenger. Biodivers. Conserv. 29, 1411–1425 (2020).

    Google Scholar 

  • Block, T. A., Lyon, B. E., Mikalonis, Z., Chaine, A. S. & Shizuka, D. Social migratory connectivity: Do birds that socialize in winter breed together?. BioRxiv 17, 76 (2021).

    Google Scholar 

  • Thaxter, C. B. et al. Seabird foraging ranges as a preliminary tool for identifying candidate Marine Protected Areas. Biol. Conserv. 156, 53–61 (2012).

    Google Scholar 

  • Santangeli, A. et al. Priority areas for conservation of Old World vultures. Conserv. Biol. 33, 1056–1065 (2019).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Costa, A., Pereira, H. & Madeira, M. Landscape dynamics in endangered cork oak woodlands in Southwestern Portugal (1958–2005). Agrofor. Syst. 77, 83–96 (2009).

    Google Scholar 

  • Del Moral, J. C. & Molina, B. (eds) El buitre leonado en España, población reproductora en 2018 y método de censo (SEO/BirdLife, 2018).

    Google Scholar 

  • Zuberogoitia, I. et al. The flight feather molt of griffon vultures (Gyps fulvus) and associated biological consequences. J. Raptor Res. 47, 292–304 (2013).

    Google Scholar 

  • Fluhr, J., Benhamou, S., Peyrusque, D. & Duriez, O. Space use and time budget in two populations of Griffon Vultures in contrasting landscapes. J. Raptor Res. 55, 13 (2021).

    Google Scholar 

  • Arrondo, E. et al. Use of avian GPS tracking to mitigate human fatalities from bird strikes caused by large soaring birds. J. Appl. Ecol. 58, 1411–1420 (2021).

    Google Scholar 

  • Serrano, D. Dispersal in raptors. In Birds of Prey. Biology and Conservation in the XXI Century (eds HernánSarasola, J. et al.) 95–121 (Springer, 2018).

    Google Scholar 

  • Williams, H. J. et al. Vultures respond to challenges of near-ground thermal soaring by varying bank angle. J. Exp. Biol. 221, 174995 (2018).

    Google Scholar 

  • García-Barón, I. et al. How to fit the distribution of apex scavengers into land-abandonment scenarios? The Cinereous vulture in the Mediterranean biome. Divers. Distrib. 24, 1018–1031 (2018).

    Google Scholar 

  • Donázar, J. A., Ceballos, O. & Cortés-Avizanda, A. Tourism in protected areas: Disentangling road and traffic effects on intra-guild scavenging processes. Sci. Total Environ. 630, 600–608 (2018).

    ADS 
    PubMed 

    Google Scholar 

  • Daoud, J. I. Multicollinearity and Regression Analysis. J. Phys. Conf. Ser. 949, 012009 (2017).

    Google Scholar 

  • Burnham, K. P., Anderson, D. R. Model Selection and Multimodel Inference: A Practical Information-Theoretic Approach (2002).

  • Symonds, M. R. E. & Moussalli, A. A brief guide to model selection, multimodel inference and model averaging in behavioural ecology using Akaike’s information criterion. Behav. Ecol. Sociobiol. 65, 13–21 (2011).

    Google Scholar 

  • Hartig, F. DHARMa: Residual Diagnostics for Hierarchical (Multi-Level/Mixed) Regression Models (2020).

  • R Core Team. R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria, (2018), https://www.r-project.org/

  • Venables, W. N. & Ripley, B. D. Modern Applied Statistics with S 4th edn. (Springer, New York, 2002).

    MATH 

    Google Scholar 

  • Bates, D., Maechler, M., Bolker, B. & Walker, S. Fitting linear mixed-effects models using lme4. J. Stat. Softw. 67, 1–48 (2015).

    Google Scholar 

  • Warnes, G. R., Bolker, B., Lumley, T., Johnson, R. C. gmodels: Various R programming tools for model fitting (2018).

  • Mazerolle, M. J. AICcmodavg: Model selection and multimodel inference based on (Q)AIC(c). R package version 2.2-2 (2019).

  • K. Barton, MuMIn: Multimodel inference. R package version 1.43.6.557. (2019).

  • QGIS.org, QGIS Geographic Information System. QGIS Association, (2019), http://www.qgis.org

  • Bouten, W., Baaij, E. W., Shammoun-Baranes, J. & Camphuysen, K. C. J. A flexible GPS tracking system for studying bird behaviour at multiple scales. J. Ornithol. 154, 571–580 (2012).

    Google Scholar 

  • ASTER GDEM Validation Team, ASTER Global Digital Elevation Model Version 2 ‐ Summary of Validation Results (2011).

  • Ruiz de la Torre, J. Mapa Forestal de España, 1:200.000, Memoria General, (ICONA, Madrid, 1990).

  • INE, Anuario estadístico. Madrid, Spain: Instituto Nacional de Estadística, Ministerio de Economía y Hacienda (2006).


  • Source: Ecology - nature.com

    Solar-powered system offers a route to inexpensive desalination

    Nurturing human communities and natural ecosystems