Barbosa, P., Krischik, V. A. & Jones, C. G. Microbial mediation of plant-herbivore interactions (John Wiley & Sons, 1991).
Berenbaum, M. R. Allelochemicals in insect–microbe–plant interactions; agents provocateurs in the
coevolutionary arms race. In Nov. Asp. Insect-Plant Interact. (eds Barbosa, P. & Letourneau, D. K.) 97–123 (1988).
Mason, C. J., Jones, A. G. & Felton, G. W. Co-option of microbial associates by insects and their impact on plant–folivore interactions. Plant Cell Environ. 42, 1078–1086 (2019).
Google Scholar
Sugio, A., Dubreuil, G., Giron, D. & Simon, J.-C. Plant–insect interactions under bacterial influence: Ecological implications and underlying mechanisms. J. Exp. Bot. 66, 467–478 (2015).
Google Scholar
Hansen, A. K. & Moran, N. A. The impact of microbial symbionts on host plant utilization by herbivorous insects. Mol. Ecol. 23, 1473–1496 (2014).
Google Scholar
Mendes, R., Garbeva, P. & Raaijmakers, J. M. The rhizosphere microbiome: Significance of plant beneficial, plant pathogenic, and human pathogenic microorganisms. FEMS Microbiol. Rev. 37, 634–663 (2013).
Google Scholar
Pineda, A. et al. Helping plants to deal with insects: The role of beneficial soil-borne microbes. Trends Plant Sci. 15, 507–514 (2010).
Google Scholar
Hammer, T. J. & Bowers, M. D. Gut microbes may facilitate insect herbivory of chemically defended plants. Oecologia 179, 1–14 (2015).
Google Scholar
Liu, H. et al. An ecological loop: Host microbiomes across multitrophic interactions. Trends Ecol. Evol. 34, 1118–1130 (2019).
Google Scholar
Grunseich, J. M., Thompson, M. N., Aguirre, N. M. & Helms, A. M. The role of plant-associated microbes in mediating host-plant selection by insect herbivores. Plants 9, 6 (2020).
Google Scholar
Ferrari, J. et al. Linking the bacterial community in pea aphids with host-plant use and natural enemy resistance. Ecol. Entomol. 29, 60–65 (2004).
Google Scholar
McLean, A. H. et al. Insect symbionts in food webs. Philos. Trans. R. Soc. B Biol. Sci. 371, 20150325 (2016).
Google Scholar
Giron, D., Dedeine, F., Dubreuil, G. et al. Influence of microbial symbionts on plant–insect interactions. In: Advances in botanical research. Elsevier, pp 225–257 (2017).
Jones, A. G., Mason, C. J., Felton, G. W. & Hoover, K. Host plant and population source drive diversity of microbial gut communities in two polyphagous insects. Sci. Rep. 9, 1–11 (2019).
Google Scholar
Xu, T.-T., Jiang, L.-Y., Chen, J. & Qiao, G.-X. Host plants influence the symbiont diversity of Eriosomatinae (Hemiptera: Aphididae). Insects 11, 217. https://doi.org/10.3390/insects11040217 (2020).
Google Scholar
Qin, M. et al. Microbiota associated with Mollitrichosiphum aphids (Hemiptera: Aphididae: Greenideinae): Diversity, host species specificity and phylosymbiosis. Environ. Microbiol. 23(4), 2184–2198. https://doi.org/10.1111/1462-2920.15391 (2021).
Google Scholar
Douglas, A. E. Microbial brokers of insect-plant interactions revisited. J. Chem. Ecol. 39, 952–961 (2013).
Google Scholar
Engel, P. & Moran, N. A. The gut microbiota of insects–diversity in structure and function. FEMS Microbiol. Rev. 37, 699–735 (2013).
Google Scholar
Chung, S. H. et al. Host plant species determines symbiotic bacterial community mediating suppression of plant defenses. Sci. Rep. 7, 1–13 (2017).
Holt, J. R. et al. Differences in microbiota between two multilocus lineages of the sugarcane aphid (Melanaphis sacchari) in the continental United States. Ann. Entomol. Soc. Am. 113(4), 257–265 (2020).
Google Scholar
McLean, A. H., Godfray, H. C. J., Ellers, J. & Henry, L. M. Host relatedness influences the composition of aphid microbiomes. Environ. Microbiol. Rep. 11, 808–816 (2019).
Google Scholar
Jones, R. T., Sanchez, L. G. & Fierer, N. A cross-taxon analysis of insect-associated bacterial diversity. PLoS ONE 8, e61218 (2013).
Google Scholar
Najar-Rodríguez, A. J. et al. The microbial flora of Aphis gossypii: Patterns across host plants and geographical space. J. Invertebr. Pathol. 100, 123–126. https://doi.org/10.1016/j.jip.2008.10.005 (2009).
Google Scholar
Blankenchip, C. L., Michels, D. E., Braker, H. E. & Goffredi, S. K. Diet breadth and exploitation of exotic plants shift the core microbiome of tropical herbivorous beetles. PeerJ. Prepr. 6, e26692v1 (2018).
Gauthier, J.-P., Outreman, Y., Mieuzet, L. & Simon, J.-C. Bacterial communities associated with host-adapted populations of pea aphids revealed by deep sequencing of 16S ribosomal DNA. PLoS ONE 10, e0120664 (2015).
Google Scholar
Wagner, S. M. et al. Facultative endosymbionts mediate dietary breadth in a polyphagous herbivore. Funct. Ecol. 29, 1402–1410 (2015).
Google Scholar
Guidolin, A. S. & Cônsoli, F. L. Symbiont diversity of Aphis (Toxoptera) citricidus (Hemiptera: Aphididae) as influenced by host plants. Microb. Ecol. 73, 201–210 (2017).
Google Scholar
Leonardo, T. E. & Muiru, G. T. Facultative symbionts are associated with host plant specialization in pea aphid populations. Proc. R. Soc. Lond. B Biol. Sci. 270, S209–S212 (2003).
Google Scholar
Xu, S., Jiang, L., Qiao, G. & Chen, J. The bacterial flora associated with the polyphagous aphid Aphis gossypii Glover (Hemiptera: Aphididae) is strongly affected by host plants. Microb. Ecol. 79, 971–984. https://doi.org/10.1007/s00248-019-01435-2 (2020).
Google Scholar
Ferrari, J., West, J. A., Via, S. & Godfray, H. C. J. Population genetic structure and secondary symbionts in host-associated populations of the pea aphid complex. Evolution 66, 375–390. https://doi.org/10.1111/j.1558-5646.2011.01436.x (2012).
Google Scholar
Brady, C. M. et al. Worldwide populations of the aphid Aphis craccivora are infected with diverse facultative bacterial symbionts. Microb. Ecol. 67, 195–204. https://doi.org/10.1007/s00248-013-0314-0 (2014).
Google Scholar
Henry, L. M., Maiden, M. C., Ferrari, J. & Godfray, H. C. J. Insect life history and the evolution of bacterial mutualism. Ecol. Lett. 18, 516–525 (2015).
Google Scholar
Simon, J.-C. et al. Host–based divergence in populations of the pea aphid: Insights from nuclear markers and the prevalence of facultative symbionts. Proc. R. Soc. Lond. B Biol. Sci. 270, 1703–1712. https://doi.org/10.1098/rspb.2003.2430 (2003).
Google Scholar
Brady, C. M. & White, J. A. Cowpea aphid (Aphis craccivora) associated with different host plants has different facultative endosymbionts. Ecol. Entomol. 38, 433–437. https://doi.org/10.1111/een.12020 (2013).
Google Scholar
Blackman, R. L. & Eastop, V. F. Aphids on the world’s herbaceous plants and shrubs, 2 Vol. set (John Wiley & Sons, 2008).
Züst, T. & Agrawal, A. A. Population growth and sequestration of plant toxins along a gradient of specialization in four aphid species on the common milkweed Asclepias syriaca. Funct. Ecol. 30, 547–556 (2016).
Google Scholar
Zytynska, S. E. & Weisser, W. W. The natural occurrence of secondary bacterial symbionts in aphids. Ecol. Entomol. 41, 13–26 (2016).
Google Scholar
Harrison, J. S. & Mondor, E. B. Evidence for an invasive aphid “Superclone”: Extremely low genetic diversity in Oleander aphid (Aphis nerii) populations in the Southern United States. PLoS ONE 6, e17524. https://doi.org/10.1371/journal.pone.0017524 (2011).
Google Scholar
Mooney, K., Jones, P. & Agrawal, A. Coexisting congeners: Demography, competition, and interactions with cardenolides for two milkweed-feeding aphids. Oikos 117, 450–458 (2008).
Google Scholar
Groeters, F. R. Geographic and clonal variation in the milkweed-oleander aphid, Aphis nerii (Homoptera: Aphididae), for winged morph production, life history, and morphology in relation to host plant permanence. Evol. Ecol. 3, 327–341 (1989).
Google Scholar
Dolan, R. W., Moore, M. E. Indiana Plant Atlas. [S.M. Landry and K.N. Campbell (original application development), USF Water Institute. University of South Florida]. Butler University Friesner Herbarium, Indianapolis, Indiana (2022).
McMartin, K. A., Malcolm, S. B. Defense expression in the aphid Myzocallis asclepiadis. Final Report. Pierce Cedar Creek Institute, Hastings, MI (2008).
Zaya, D. N., Pearse, I. S. & Spyreas, G. Long-term trends in Midwestern Milkweed abundances and their relevance to monarch butterfly declines. Bioscience 67, 343–356. https://doi.org/10.1093/biosci/biw186 (2017).
Google Scholar
Binetruy, F., Dupraz, M., Buysse, M. & Duron, O. Surface sterilization methods impact measures of internal microbial diversity in ticks. Parasit. Vectors 12, 268 (2019).
Google Scholar
Gohl, D. M. et al. Systematic improvement of amplicon marker gene methods for increased accuracy in microbiome studies. Nat. Biotechnol. 34, 942–949 (2016).
Google Scholar
Caporaso, J. G. et al. Global patterns of 16S rRNA diversity at a depth of millions of sequences per sample. Proc. Natl. Acad. Sci. 108, 4516–4522. https://doi.org/10.1073/pnas.1000080107 (2011).
Google Scholar
Bolger, A. M., Lohse, M. & Usadel, B. Trimmomatic: A flexible trimmer for Illumina sequence data. Bioinformatics 30, 2114–2120 (2014).
Google Scholar
Martin, M. Cutadapt removes adapter sequences from high-throughput sequencing reads. EMBnet J. 17, 10–12 (2011).
Google Scholar
Callahan, B. J. et al. DADA2: High-resolution sample inference from Illumina amplicon data. Nat. Methods 13, 581–583 (2016).
Google Scholar
Jousselin, E. et al. Assessment of a 16S rRNA amplicon Illumina sequencing procedure for studying the microbiome of a symbiont-rich aphid genus. Mol. Ecol. Resour. 16, 628–640. https://doi.org/10.1111/1755-0998.12478 (2016).
Google Scholar
McMurdie, P. J. & Holmes, S. phyloseq: an R package for reproducible interactive analysis and graphics of microbiome census data. PLoS ONE 8, e61217 (2013).
Google Scholar
Dixon, P. VEGAN, a package of R functions for community ecology. J. Veg. Sci. 14, 927–930 (2003).
Google Scholar
Love, M. I., Huber, W. & Anders, S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 15, 550 (2014).
Google Scholar
Wright, E. S. Using DECIPHER v2. 0 to analyze big biological sequence data in R. R J. 8(1), 352 (2016).
Google Scholar
Schliep, K., Potts, A. A., Morrison, D. A. & Grimm, G. W. Intertwining phylogenetic trees and networks (No. e2054v1). PeerJ Preprints (2016).
Hannula, S. E., Zhu, F., Heinen, R. & Bezemer, T. M. Foliar-feeding insects acquire microbiomes from the soil rather than the host plant. Nat. Commun. 10, 1–9 (2019).
Google Scholar
Gomes, S. I. et al. Microbiomes of a specialist caterpillar are consistent across different habitats but also resemble the local soil microbial communities. Anim. Microbiome 2, 1–12 (2020).
Google Scholar
Malacrinò, A. Host species identity shapes the diversity and structure of insect microbiota. Mol. Ecol. 31, 723–735. https://doi.org/10.1111/mec.16285 (2022).
Google Scholar
Colman, D. R., Toolson, E. C. & Takacs-Vesbach, C. D. Do diet and taxonomy influence insect gut bacterial communities?. Mol. Ecol. 21, 5124–5137 (2012).
Google Scholar
Pons, I., Renoz, F., Noël, C. & Hance, T. Circulation of the cultivable symbiont Serratia symbiotica in aphids is mediated by plants. Front. Microbiol. 10, 764. https://doi.org/10.3389/fmicb.2019.00764 (2019).
Google Scholar
Li, Q. et al. Plant-mediated horizontal transmission of Hamiltonella defensa in the wheat aphid Sitobion miscanthi. J. Agric. Food Chem. 66, 13367–13377. https://doi.org/10.1021/acs.jafc.8b04828 (2018).
Google Scholar
Jousselin, E., Cø eur d’Acier, A., Vanlerberghe-Masutti, F. & Duron, O. Evolution and diversity of A rsenophonus endosymbionts in aphids. Mol. Ecol. 22, 260–270 (2013).
Google Scholar
Nováková, E., Hypša, V. & Moran, N. A. Arsenophonus, an emerging clade of intracellular symbionts with a broad host distribution. BMC Microbiol. 9, 143 (2009).
Google Scholar
Chong, R. A. & Moran, N. A. Evolutionary loss and replacement of Buchnera, the obligate endosymbiont of aphids. ISME J. 12, 898–908 (2018).
Google Scholar
Wulff, J. A. & White, J. A. The endosymbiont Arsenophonus provides a general benefit to soybean aphid (Hemiptera: Aphididae) regardless of host plant resistance (Rag). Environ. Entomol. 44, 574–581 (2015).
Google Scholar
Ivens, A. B., Gadau, A., Kiers, E. T. & Kronauer, D. J. Can social partnerships influence the microbiome? Insights from ant farmers and their trophobiont mutualists. Mol. Ecol. 27, 1898–1914 (2018).
Google Scholar
Fischer, C. Y. et al. Bacteria may enhance species association in an ant–aphid mutualistic relationship. Chemoecology 25, 223–232 (2015).
Google Scholar
Smith, R. A., Mooney, K. A. & Agrawal, A. A. Coexistence of three specialist aphids on common Milkweed, Asclepias syriaca. Ecology 89, 2187–2196 (2009).
Google Scholar
Katayama, N., Tsuchida, T., Hojo, M. K. & Ohgushi, T. aphid genotype determines intensity of ant attendance: Do endosymbionts and honeydew composition matter?. Ann. Entomol. Soc. Am. 106, 761–770 (2013).
Google Scholar
Hansen, T. E. & Enders, L. S. Host Plant species influences the composition of milkweed and Monarch microbiomes. Front. Microbiol. https://doi.org/10.3389/fmicb.2022.840078 (2022).
Google Scholar
Source: Ecology - nature.com