in

Apparent absence of avian malaria and malaria-like parasites in northern blue-footed boobies breeding on Isla Isabel

  • Atkinson, C. T. & Van Riper, C. Pathogenicity and epizootiology of avian haematozoa: Plasmodium, Leucocytozoon, and Haemoproteus. Bird-Parasite Interact. 2, 19–48 (1991).

    Google Scholar 

  • Sorci, G. & Moller, A. P. Comparative evidence for a positive correlation between haematozoan prevalence and mortality in waterfowl. J. Evol. Biol. 10, 731–741 (1997).

    Google Scholar 

  • Merino, S., Moreno, J., Sanz, J. J. & Arriero, E. Are avian blood parasites pathogenic in the wild? A medication experiment in blue tits (Parus caeruleus). Proc. Biol. Sci. 267, 2507–2510 (2000).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Asghar, M. et al. Hidden costs of infection: Chronic malaria accelerates telomere degradation and senescence in wild birds. Science 347, 436–438 (2015).

    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Quillfeldt, P., Arriero, E., Martínez, J., Masello, J. F. & Merino, S. Prevalence of blood parasites in seabirds – A review. Front. Zool. 8, 26 (2011).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Piersma, T. Do global patterns of habitat use and migration strategies co-evolve with relative investments in immunocompetence due to spatial variation in parasite pressure?. Oikos 80, 623 (1997).

    Google Scholar 

  • Mendes, L., Piersma, T., Lecoq, M., Spaans, B. & Ricklefs, R. E. Disease-limited distributions? Contrasts in the prevalence of avian malaria in shorebird species using marine and freshwater habitats. Oikos 109, 396–404 (2005).

    Google Scholar 

  • Martínez-Abraín, A., Esparza, B. & Oro, D. Lack of blood parasites in bird species: Does absence of blood parasite vectors explain it all?. Ardeola 51, 225–232 (2004).

    Google Scholar 

  • Campioni, L. et al. Absence of haemosporidian parasite infections in the long-lived Cory’s shearwater: Evidence from molecular analyses and review of the literature. Parasitol. Res. 117, 323–329 (2018).

    PubMed 

    Google Scholar 

  • Osorio-Beristain, M. & Drummond, H. Non-aggressive mate guarding by the blue-footed booby: A balance of female and male control. Behav. Ecol. Sociobiol. 43, 307–315 (1998).

    Google Scholar 

  • Nelson, J. B. Pelicans, Cormorants and Their Relatives: The Pelecaniformes (Oxford University Press, 2006).

    Google Scholar 

  • Kim, S. Y., Torres, R., Domínguez, C. A. & Drummond, H. Lifetime philopatry in the blue-footed booby: A longitudinal study. Behav. Ecol. 18, 1132–1138 (2007).

    Google Scholar 

  • Drummond, H. & Rodríguez, C. Viability of booby offspring is maximized by having one young parent and one old parent. PLoS ONE 10, e0133213 (2015).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Lee-Cruz, L. et al. Prevalence of Haemoproteus sp. in Galápagos blue-footed boobies: Effects on health and reproduction. Parasitol. Open 2 (2016).

  • Santiago-Alarcon, D., Palinauskas, V. & Schaefer, H. M. Diptera vectors of avian Haemosporidian parasites: Untangling parasite life cycles and their taxonomy. Biol. Rev. 87, 928–964 (2012).

    PubMed 

    Google Scholar 

  • Bond, J. G. et al. Diversity of mosquitoes and the aquatic insects associated with their oviposition sites along the Pacific coast of Mexico. Parasit. Vectors 7, 41 (2014).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Ibañez-Bernal, S. Informe Final del Proyecto Actualización del Catálogo de Autoridad Taxonómica del Orden Diptera (Insecta) de México CONABIO (JE006). (2017).

  • Levin, I. I. et al. Hippoboscid-transmitted Haemoproteus parasites (Haemosporida) infect Galapagos Pelecaniform birds: Evidence from molecular and morphological studies, with a description of Haemoproteus iwa. Int. J. Parasitol. 41, 1019–1027 (2011).

    PubMed 

    Google Scholar 

  • Madsen, V. et al. Testosterone levels and gular pouch coloration in courting magnificent frigatebird (Fregata magnificens): Variation with age-class, visited status and blood parasite infection. Horm. Behav. 51, 156–163 (2007).

    CAS 
    PubMed 

    Google Scholar 

  • Clark, G. W. & Swinehart, B. Avian haematozoa from the offshore islands of northern Mexico. Wildl. Dis. 5, 111–112 (1969).

    CAS 
    PubMed 

    Google Scholar 

  • Quillfeldt, P. et al. Hemosporidian blood parasites in seabirds—A comparative genetic study of species from Antarctic to tropical habitats. Naturwissenschaften 97, 809–817 (2010).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Merino, S. et al. Infection by haemoproteus parasites in four species of frigatebirds and the description of a new species of Haemoproteus (Haemosporida: Haemoproteidae). J. Parasitol. 98, 388–397 (2012).

    PubMed 

    Google Scholar 

  • Svensson, L. M. E. & Ricklefs, R. E. Low diversity and high intra-island variation in prevalence of avian Haemoproteus parasites on Barbados, Lesser Antilles. Parasitology 136, 1121–1131 (2009).

    PubMed 

    Google Scholar 

  • Loiseau, C. et al. Spatial variation of haemosporidian parasite infection in african rainforest bird species. J. Parasitol. 96, 21–29 (2010).

    PubMed 

    Google Scholar 

  • Madsen, V. Female Mate Choice in the Magnificent Frigatebird (Fregata magnificens) (Universidad Nacional Autónoma de México, 2004).

    Google Scholar 

  • Super, P. E. & van Riper, C. A comparison of avian hematozoan epizootiology in two California coastal scrub communities. J. Wildl. Dis. 31, 447–461 (1995).

    CAS 
    PubMed 

    Google Scholar 

  • CONANP. Programa de Conservación y Manejo del Parque Nacional Isla Isabel. (2005).

  • Ancona, S., Drummond, H., Rodríguez, C. & Zúñiga-Vega, J. J. Long-term population dynamics reveal that survival and recruitment of tropical boobies improve after a hurricane. J. Avian Biol. 48, 320–332 (2017).

    Google Scholar 

  • Martínez-de la Puente, J., Martinez, J., Rivero-de Aguilar, J., Herrero, J. & Merino, S. On the specificity of avian blood parasites: Revealing specific and generalist relationships between haemosporidians and biting midges. Mol. Ecol. 20, 3275–3287 (2011).

    PubMed 

    Google Scholar 

  • Bastien, M., Jaeger, A., Le Corre, M., Tortosa, P. & Lebarbenchon, C. Haemoproteus iwa in Great Frigatebirds (Fregata minor) in the Islands of the Western Indian Ocean. PLoS ONE 9, e97185 (2014).

    ADS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Maa, T. C. Records of Hippoboscidae (diptera) from the Central Pacific. J. Med. Ent. 3, 325–328 (1968).

    Google Scholar 

  • Levin, I. I. & Parker, P. G. Comparative host–parasite population genetic structures: Obligate fly ectoparasites on Galapagos seabirds. Parasitology 140, 1061–1069 (2013).

    CAS 
    PubMed 

    Google Scholar 

  • Ramos-González, A. Hábitat y Edad de los Bobos de Patas Azules: Factores Importantes Para la Paternidad y Abundancia de Garrapatas. Primera edición. 88. (Universidad Nacional Autónoma de México, 2019). Print ISBN 978-607-30-1489-2.

  • Bensch, S. et al. Contaminations contaminate common databases. Mol. Ecol. Resour. 21, 355–362 (2021).

    CAS 
    PubMed 

    Google Scholar 

  • Taylor, S. A., Maclagan, L., Anderson, D. J. & Friesen, V. L. Could specialization to cold-water upwelling systems influence gene flow and population differentiation in marine organisms? A case study using the blue-footed booby, Sula nebouxii. J. Biogeogr. 38, 883–893 (2011).

    Google Scholar 

  • Kalbe, M. & Kurtz, J. Local differences in immunocompetence reflect resistance of sticklebacks against the eye fluke Diplostomum pseudospathaceum. Parasitology 132, 105–116 (2006).

    CAS 
    PubMed 

    Google Scholar 

  • Martin, L. B., Gilliam, J., Han, P., Lee, K. & Wikelski, M. Corticosterone suppresses cutaneous immune function in temperate but not tropical house sparrows Passer domesticus. Gen. Comp. Endocrinol. 140, 126–135 (2005).

    CAS 

    Google Scholar 

  • Becker, D. J. et al. Macroimmunology: The drivers and consequences of spatial patterns in wildlife immune defence. J. Anim. Ecol. 89, 972–995 (2020).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Ting, J. et al. Malaria parasites and related haemosporidians cause mortality in cranes: A study on the parasites diversity, prevalence and distribution in Beijing Zoo. Malar. J. 17, 234 (2018).

    Google Scholar 

  • Grilo, M. L. et al. Malaria in penguins – Current perceptions. Avian Pathol. 45, 393–407 (2016).

    CAS 
    PubMed 

    Google Scholar 

  • Jovani, R. & Tella, J. L. Parasite prevalence and sample size: misconceptions and solutions. Trends Parasitol. 22, 214–218 (2006).

    PubMed 

    Google Scholar 

  • Bensch, S. et al. Temporal dynamics and diversity of avian malaria parasites in a single host species. J. Anim. Ecol. 76, 112–122 (2007).

    MathSciNet 
    PubMed 

    Google Scholar 

  • Lachish, S., Knowles, S. C., Alves, R., Wood, M. J. & Sheldon, B. C. Infection dynamics of endemic malaria in a wild bird population: Parasite species-dependent drivers of spatial and temporal variation in transmission rates. J. Anim. Ecol. 80, 1207–1216 (2011).

    PubMed 

    Google Scholar 

  • Lopes, V. L. et al. High fidelity defines the temporal consistency of host-parasite interactions in a tropical coastal ecosystem. Sci. Rep. 10, 16839 (2020).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Valkiunas, G. et al. A comparative analysis of microscopy and PCR-based detection methods for blood parasites. J. Parasitol. 94, 1395–1401 (2008).

    CAS 
    PubMed 

    Google Scholar 

  • Santiago-Alarcon, D. et al. Parasites in space and time: A case study of haemosporidian spatiotemporal prevalence in urban birds. Int. J. Parasitol. 49, 235–246 (2019).

    PubMed 

    Google Scholar 

  • Ancona, S., Sánchez-Colón, S., Rodríguez, C. & Drummond, H. E. Niño in the warm tropics: Local sea temperature predicts breeding parameters and growth of blue-footed boobies. J. Anim. Ecol. 80, 799–808 (2011).

    PubMed 

    Google Scholar 

  • Drummond, H., Torres, R. & Krishnan, V. V. Buffered development: Resilience after aggressive subordination in infancy. Am. Nat. 161, 794–807 (2003).

    PubMed 

    Google Scholar 

  • Merino, S. & Potti, J. High prevalence of hematozoa in nestlings of a passerine species, the pied flycatcher (Ficedula hypoleuca). Auk 112, 1041–1043 (1995).

    Google Scholar 

  • Gutiérrez-López, R. et al. Low prevalence of blood parasites in a long-distance migratory raptor: The importance of host habitat. Parasit. Vectors 8, 189 (2015).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Hellgren, O., Waldenström, J. & Bensch, S. A new PCR assay for simultaneous studies of Leucocytozoon, Plasmodium, and Haemoproteus from avian blood. J. Parasitol. 90, 797–802 (2004).

    CAS 
    PubMed 

    Google Scholar 

  • Bensch, S. et al. Host specificity in avian blood parasites: A study of Plasmodium and Haemoproteus mitochondrial DNA amplified from birds. Proc. Biol. Sci. 267, 1583–1589 (2000).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 


  • Source: Ecology - nature.com

    Using excess heat to improve electrolyzers and fuel cells

    Machine learning, harnessed to extreme computing, aids fusion energy development