Wink, M. Evolution of secondary metabolites from an ecological and molecular phylogenetic perspective. Phytochemistry 64, 3–19 (2003).
Google Scholar
Khare, S. et al. Plant secondary metabolites synthesis and their regulations under biotic and abiotic constraints. J. Plant Biol. 63, 203–216 (2020).
Google Scholar
Gajger, I. T. & Dar, S. A. Plant allelochemicals as sources of insecticides. Insects 12, 189 (2021).
Google Scholar
Vig, A. P., Rampal, G., Thind, T. S. & Arora, S. Bio-protective effects of glucosinolates: A review. LWT Food Sci. Technol. 42, 1561–1572 (2009).
Google Scholar
Sikorska-Zimny, K. & Beneduce, L. The glucosinolates and their bioactive derivatives in Brassica: A review on classification, biosynthesis and content in plant tissues, fate during and after processing, effect on the human organism and interaction with the gut microbiota. Crit. Rev. Food Sci. Nutr. 61, 2544–2571. https://doi.org/10.1080/10408398.2020.1780193 (2020).
Google Scholar
Radojčić Redovniković, I., Glivetić, T., Delonga, K. & Vorkapić-Furač, J. Glucosinolates and their potential role in plant. Period. Biol. 110, 297–309 (2008).
Wittstock, U., Kliebenstein, D. J., Lambrix, V., Reichelt, M. & Gershenzon, J. Chapter five glucosinolate hydrolysis and its impact on generalist and specialist insect herbivores. Recent Adv. Phytochem. 37, 101–125 (2003).
Google Scholar
Noret, N. et al. Palatability of Thlaspi caerulescens for snails: Influence of zinc and glucosinolates. New Phytol. 165, 763–772 (2005).
Google Scholar
Hopkins, R. J., Van Dam, N. M. & Van Loon, J. J. A. Role of glucosinolates in Insect-plant relationships and multitrophic interactions. Annu. Rev. Entomol. 54, 57–83 (2008).
Google Scholar
Guleria, S. & Tiku, A. K. Botanicals in pest management: Current status and future perspectives. Integr. Pest Manag. 1, 317–329 (2009).
Clay, N. K., Adio, A. M., Denoux, C., Jander, G. & Ausubel, F. M. Glucosinolate metabolites required for an Arabidopsis innate immune response. Science 323, 95–101 (2009).
Google Scholar
Yang, B. et al. Inhibitory effect of allyl and benzyl isothiocyanates on ochratoxin a producing fungi in grape and maize. Food Microbiol. 100, 103865 (2021).
Google Scholar
Agrawal, A. A. & Kurashige, N. S. A role for isothiocyanates in plant resistance against the specialist herbivore Pieris rapae. J. Chem. Ecol. 296(29), 1403–1415 (2003).
Google Scholar
Müller, C. et al. The role of the glucosinolate-myrosinase system in mediating greater resistance of Barbarea verna than B. vulgaris to Mamestra brassicae Larvae. J. Chem. Ecol. 44, 1190–1205 (2018).
Google Scholar
Kegley, S. E., Hill, B. R., Orme, S. & Choi, A. H. PAN Pesticide Database (Pesticide Action Network, 2000).
Worfel, R. C., Schneider, K. S. & Yang, T. C. S. Suppressive effect of allyl isothiocyanate on populations of stored grain insect pests. J. Food Process. Preserv. 21, 9–19 (1997).
Google Scholar
Wu, H., Zhang, G. A., Zeng, S. & Lin, K. C. Extraction of allyl isothiocyanate from horseradish (Armoracia rusticana) and its fumigant insecticidal activity on four stored-product pests of paddy. Pest Manag. Sci. 65, 1003–1008 (2009).
Google Scholar
Bhushan, S., Gupta, S., Kaur Sohal, S., Arora, S. & Saroj Arora, C. Assessment of insecticidal action of 3-Isothiocyanato-1-propene on the growth and development of Spodoptera litura (Fab.) (Lepidoptera: Noctuidae). J. Entomol. Zool. Stud. 4, 1068–1073 (2016).
Dhillon, M. K., Naresh, J. S., Singh, R. & Sharma, N. K. Reaction of different bitter gourd (Momordica charantia L.) genotypes to melon fruit fly, Bactrocera cucurbitae (Coquillett). Int. J. Plant Prot. 33, 55–59 (2005).
Ekesi, S., Nderitu, P. W. & Chang, C. L. Adaptation to and small-scale rearing of invasive fruit fly Bactrocera invadens (Diptera: Tephritidae) on artificial diet. Ann. Entomol. Soc. Am. 100, 562–567 (2007).
Google Scholar
Jakhar, S. et al. Estimation losses due to fruit fly, Bactrocera cucurbitae (Coquillett) on long melon in semi-arid region of Rajasthan. J. Entomol. Zool. Stud. 8, 632–635 (2020).
Google Scholar
Ladania, M. S. Physiological Disorders and Their Management. Citrus Fruit: Biology, Technology and Evaluation 451–463 (Academic press, 2008).
Du, Y., Grodowitz, M. J. & Chen, J. Insecticidal and enzyme inhibitory activities of isothiocyanates against red imported fire ants, Solenopsis invicta. Biomolecules 10, 716 (2020).
Google Scholar
Tsao, R., Reuber, M., Johnson, L. & Coats, J. R. Insecticidal toxicities of glucosinolate· containing extracts from crambe seeds. J. Agric. Urban Entomol. 13, 109–120 (1996).
Google Scholar
Li, Q., Eigenbrode, S. D., Stringam, G. R. & Thiagarajah, M. R. Feeding and growth of Plutella xylostella and Spodoptera eridania on Brassica juncea with varying glucosinolate concentrations and myrosinase activities. J. Chem. Ecol. 26, 2401–2419 (2000).
Google Scholar
Noble, R. R., Harvey, S. G. & Sams, C. E. Toxicity of Indian mustard and allyl isothiocyanate to masked chafer beetle larvae. Plant Health Prog. 3, 9 (2002).
Google Scholar
Sousa, A. H., Faroni, L. R. A., Pimentel, M. A. G. & Freitas, R. S. Relative toxicity of mustard essential oil to insect-pests of stored products. Rev. Caatinga 27, 222–226 (2014).
de Souza, L. P., Faroni, L. R. D. A., Lopes, L. M., de Sousa, A. H. & Prates, L. H. F. Toxicity and sublethal effects of allyl isothiocyanate to Sitophilus zeamais on population development and walking behavior. J. Pest Sci. 91, 761–770 (2018).
Google Scholar
Freitas, R. C. P., Faroni, L. R. D. A., Haddi, K., Jumbo, L. O. V. & Oliveira, E. E. Allyl isothiocyanate actions on populations of Sitophilus zeamais resistant to phosphine: Toxicity, emergence inhibition and repellency. J. Stored Prod. Res. 69, 257–264 (2016).
Google Scholar
Jabeen, A., Zaitoon, A., Lim, L. T. & Scott-Dupree, C. Toxicity of five plant volatiles to adult and egg stages of Drosophila suzukii matsumura (Diptera: Drosophilidae), the spotted-wing Drosophila. J. Agric. Food Chem. 69, 9511–9519 (2021).
Google Scholar
Wu, H., Liu, X. R., Yu, D. D., Zhang, X. & Feng, J. T. Effect of allyl isothiocyanate on ultra-structure and the activities of four enzymes in adult Sitophilus zeamais. Pestic. Biochem. Physiol. 109, 12–17 (2014).
Google Scholar
Zhang, C., Wu, H., Zhao, Y., Ma, Z. & Zhang, X. Comparative studies on mitochondrial electron transport chain complexes of Sitophilus zeamais treated with allyl isothiocyanate and calcium phosphide. Pestic. Biochem. Physiol. 126, 70–75 (2016).
Google Scholar
Jeschke, V. et al. How glucosinolates affect generalist lepidopteran larvae: Growth, development and glucosinolate metabolism. Front Plant Sci. 8, 1995. https://doi.org/10.3389/fpls.2017.01995 (2017).
Google Scholar
Agnihotri, A. R., Hulagabali, C. V., Adhav, A. S. & Joshi, R. S. Mechanistic insight in potential dual role of sinigrin against Helicoverpa armigera. Phytochemistry 145, 121–127. https://doi.org/10.1016/j.phytochem.2017.10.014 (2018).
Google Scholar
Jeschke, V. et al. So much for glucosinolates: A generalist does survive and develop on Brassicas, but at what cost?. Plants 10, 962. https://doi.org/10.3390/plants10050962 (2021).
Google Scholar
Benrey, B. & Denno, R. F. The slow-growth-high-mortality hypothesis: A test using the cabbage butterfly. Ecology 78, 987–999 (1997).
Shroff, R., Vergara, F., Muck, A., Svatoš, A. & Gershenzon, J. Nonuniform distribution of glucosinolates in Arabidopsis thaliana leaves has important consequences for plant defense. Proc. Natl. Acad. Sci 05, 6196–6201 (2008).
Google Scholar
Bai, P. P. et al. Inhibition of phenoloxidase activity delays development in Bactrocera dorsalis (Diptera: Tephritidae). Fla. Entomol. 97, 477–485. https://doi.org/10.1653/024.097.0218 (2014).
Google Scholar
Datta, R., Kaur, A., Saraf, I., Singh, I. P. & Kaur, S. Effect of ethyl acetate extract and purified compounds of Alpinia galanga (L.) on Immune Response of a Polyphagous Lepidopteran pest, Spodoptera litura (Fabricius). Asian J. Adv. Basic Sci. 6, 16–21 (2018).
Google Scholar
Hartzer, K. L., Zhu, K. Y. & Baker, J. E. Phenoloxidase in larvae of Plodia interpunctella (Lepidoptera: Pyralidae): Molecular cloning of the proenzyme cDNA and enzyme activity in larvae paralyzed and parasitized by Habrobracon hebetor (Hymenoptera: Braconidae). Arch. Insect Biochem. Physiol. 59, 67–79 (2005).
Google Scholar
Silva, C. J. M. et al. Immune response triggered by the ingestion of polyethylene microplastics in the dipteran larvae Chironomus riparius. J. Hazard. Mater. 414, 125401. https://doi.org/10.1016/j.jhazmat.2021.125401 (2021).
Google Scholar
Aucoin, R. R., Philogène, B. J. R. & Arnason, J. T. Antioxidant enzymes as biochemical defenses against phototoxin induced oxidative stress in three species of herbivorous Lepidoptera. Arch. Insect Biochem. Physiol. 16, 139–152 (1991).
Google Scholar
Wang, Y., Branicky, R., Noë, A. & Hekimi, S. Superoxide dismutases: Dual roles in controlling ROS damage and regulating ROS signaling. Int. J. Cell Biol. 217, 1915–1928. https://doi.org/10.1083/jcb.201708007 (2018).
Google Scholar
Zhang, C., Ma, Z., Zhang, X. & Wu, H. Transcriptomic alterations in Sitophilus zeamais in response to allyl isothiocyanate fumigation. Pest. Biochem. Physiol. 137, 62–70. https://doi.org/10.1016/j.pestbp.2016.10.001 (2017).
Google Scholar
Felton, G. W. & Summers, C. B. Antioxidant systems in insects. Arch. Insect Biochem. Physiol. 29, 187–197. https://doi.org/10.1002/arch.940290208 (1995).
Google Scholar
Cadenas, E. Mechanisms of oxygen activation and reactive oxygen species detoxification. In Oxidative Stress and Antioxidant Defenses in Biology (ed. Ahmad, S.) 1–46 (Chapman & Hall, 1995). https://doi.org/10.1007/978-1-4615-9689-9_1.
Google Scholar
Schramm, K., Vassão, D. G., Reichelt, M., Gershenzon, J. & Wittstock, U. Metabolism of glucosinolate- derived isothiocyanates to glutathione conjugates in generalist lepidopteran herbivores. Insect Biochem. Mol. Biol. 42, 174–182. https://doi.org/10.1016/j.ibmb.2011.12.002 (2012).
Google Scholar
Falk, K. L. et al. The role of glucosinolates and the jasmonic acid pathway in resistance of Arabidopsis thaliana against molluscan herbivores. Mol. Ecol. 23, 1188–1203. https://doi.org/10.1111/mec.12610 (2014).
Google Scholar
Gloss, A. D. et al. Evolution in an ancient detoxification pathway is coupled with a transition to herbivory in the Drosophilidae. Mol. Biol. Evol. 31, 2441–3245. https://doi.org/10.1093/molbev/msu201 (2014).
Google Scholar
Bhatt, P., Zhou, X., Huang, Y., Zhang, W. & Chen, S. Characterization of the role of esterases in the biodegradation of organophosphate, carbamate, and pyrethroid pesticides. J. Hazard. Mater. 1, 125026. https://doi.org/10.1016/j.jhazmat.2020.125026 (2021).
Google Scholar
Murfadunnisa, S. et al. Larvicidal and enzyme inhibition of essential oil from Spheranthus amaranthroids (Burm.) against lepidopteran pest Spodoptera litura (Fab.) and their impact on non-target earthworms. Biocatal. Agric. Biotechnol. 21, 101324. https://doi.org/10.1016/j.bcab.2019.101324 (2019).
Google Scholar
Sengottayan, S. N. Physiological and biochemical effect of neem and other Meliaceae plants secondary metabolites against Lepidopteran insects. Front. Physiol. 4, 359. https://doi.org/10.3389/fphys.2013.00359 (2013).
Google Scholar
Augustyniak, M., Gladysz, M. & Dziewięcka, M. The Comet assay in insects: Status, prospects and benefits for science. Mutat. Res. Rev. Mutat. Res. 767, 67–76. https://doi.org/10.1016/j.mrrev.2015.09.001Get (2016).
Google Scholar
Foster, E. R. & Downs, J. A. Histone H2A phosphorylation in DNA double strand break repair. FEBS J. 272, 3231–3240. https://doi.org/10.1111/j.1742-4658.2005.04741.x (2005).
Google Scholar
Porichha, S. K., Sarangi, P. K. & Prasad, R. Genotoxic effect of chlorpyrifosin Channa punctatus. Cytol. Genet. 9, 631–638 (1998).
Kalita, M. K., Haloi, K. & Devi, D. Larval exposure to chlorpyrifos affects nutritional physiology and induces genotoxicity in silkworm Philosamia ricini (Lepidoptera: Saturniidae). Front. physiol. 7, 1–14. https://doi.org/10.3389/fphys.2016.00535 (2016).
Google Scholar
Datta, R. et al. Assessment of genotoxic and biochemical effects of purified compounds of Alpinia galanga on a polyphagous lepidopteran pest Spodoptera litura (Fabricius). Phytoparasitica 48, 501–511. https://doi.org/10.1007/s12600-020-00813-8 (2020).
Google Scholar
Afify, A. & Negm, A. A. K. H. Genotoxic effect of insect growth regulators on different stages of peach fruit fly, Bactrocera zonata (Saunders)(Diptera: Tephritidae). Afr. Entomol. 26, 154–161 (2018).
Google Scholar
Gupta, J. N., Verma, A. N. & Kashyap, R. K. An improved method for mass rearing for melon fruit fly Dacus cucurbitae Coquillett. Indian J. Entomol. 40, 470–471 (1978).
Srivastava, B. G. A chemically defined diet for Dacus cucurbitae (Coq.) larvae under aseptic conditions. Entomol. News Lett. 5, 24 (1975).
Kumar, A., Sood, S., Mehta, V., Nadda, G. & Shanker, A. Biology of Thysanoplusia orichalcea (Fab.) in relation to host preference and suitability for insect culture and bioefficacy. Indian J. Appl. Entomol. 18, 16–21 (2004).
Martinez, S. S. & Emden, H. F. V. Growth disruption, abnormalities and mortality of Spodoptera littoralis (Boisduval) (Lepidoptera: Noctuidae) caused by azadirachtin. Neotrop. Entomol. 30, 113–125 (2001).
Google Scholar
Khan, Z. R. & Saxena, R. C. Behavioural and physiological responses of Sogatella furcifera (Homoptera: Delphacidae) to selected resistant and susceptible rice cultivars. J. Econ. Entomol. 78, 1280–1286 (1985).
Google Scholar
Zimmer, M. Phenol oxidation. In Methods to Study Litter Decomposition (eds Graça, M. A. et al.) (Springer, 2005).
Kono, Y. Generation of superoxide radical during auto-oxidation of hydroxylamine and an assay for superoxide dismutase. Arch. Biochem. Biophys. 186, 189–195. https://doi.org/10.1016/0003-9861(78)90479-4 (1978).
Google Scholar
Bergmeyer, H. U. Reagents for enzymatic analysis. In Methods of Enzymatic Analysis (eds Bergmeyer, H. U. & Gawehn, K.) 438 (Verlag Chemie, 1974).
Chien, C. & Dauterman, W. C. Studies on glutathione S-transferases in Helicoverpa (=Heliothis) zea. Insect Biochem. 21, 857–864. https://doi.org/10.1016/0020-1790(91)90092-S (1991).
Google Scholar
Katzenellenbogen, B. & Kafatos, F. C. General esterases of silk worm moth moulting fluid: Preliminary characterization. J. Insect Physiol. 17, 1139–1151. https://doi.org/10.1016/0022-1910(71)90016-3 (1971).
Google Scholar
Mac Intyre, R. J. A method for measuring activities of acid phosphatases separated by acrylamide gel electrophoresis. Biochem. Genet. 5, 45–56 (1971).
Google Scholar
Singh, N. P., McCoy, M. T., Tice, R. R. & Schneider, E. L. A simple technique for quantitation of low levels of DNA damage in individual cells. Exp. Cell Res. 175, 184–191 (1988).
Google Scholar
Source: Ecology - nature.com