Smith, S. E. & Read, D. J. Mycorrhizal Symbiosis 3rd edn. (Academic Press, 2008).
van der Heijden, M. G. A., Martin, F. M., Selosse, M. A. & Sanders, I. R. Mycorrhizal ecology and evolution: The past, the present, and the future. New Phytol. 205, 1406–1423 (2015).
Google Scholar
Štajerová, K., Šmilauerová, M. & Šmilauer, P. Arbuscular mycorrhizal symbiosis of herbaceous invasive neophytes in the Czech Republic. Preslia 81, 341–355 (2009).
Hempel, S. et al. Mycorrhizas in the Central European flora: Relationships with plant life history traits and ecology. Ecology 94, 1389–1399 (2013).
Google Scholar
Soudzilovskaia, N. A. et al. FungalRoot: Global online database of plant mycorrhizal associations. New Phytol. 227, 955–966 (2020).
Google Scholar
Spatafora, J. W. et al. A phylum-level phylogenetic classification of zygomycete fungi based on genome-scale data. Mycologia 108, 1028–1046 (2016).
Google Scholar
Lekberg, Y., Hammer, E. C. & Olsson, P. A. Plants as resource islands and storage units—Adopting the mycocentric view of arbuscular mycorrhizal networks. FEMS Microbiol. Ecol. 74, 336–345 (2010).
Google Scholar
Newsham, K. K., Fitter, A. H. & Watkinson, A. R. Arbuscular mycorrhiza protect an annual grass from root pathogenic fungi in the field. J. Ecol. 83, 991–1000 (1995).
Google Scholar
Vigo, C., Norman, J. R. & Hooker, J. E. Biocontrol of the pathogen Phytophthora parasitica by arbuscular mycorrhizal fungi is a consequence of effects on infection loci. Plant Pathol. 49, 509–514 (2000).
Google Scholar
Pfeffer, P. E., Douds, D. D., Becard, G. & Shachar-Hill, Y. Carbon uptake and the metabolism and transport of lipids in an arbuscular mycorrhiza. Plant Physiol. 120, 587–598 (1999).
Google Scholar
Bago, B., Pfeffer, P. E. & Shachar-Hill, Y. Carbon metabolism and transport in arbuscular mycorrhizas. Plant Physiol. 124, 949–958 (2000).
Google Scholar
Ramirez, R., Mendoza, B. & Lizaso, J. I. Mycorrhiza effect on maize P uptake from phosphate rock and superphosphate. Commun. Soil Sci. Plant Anal. 40, 13–14 (2009).
Google Scholar
Pearson, J. N. & Jakobsen, I. The relative contribution of hyphae and roots to phosphorus uptake by arbuscular mycorrhizal plants, measured by dual labeling with 32P and 33P. New Phytol. 124, 489–494 (1993).
Google Scholar
Smith, S. E., Smith, F. A. & Jakobsen, I. Functional diversity in arbuscular mycorrhizal (AM) symbioses: The contribution of the mycorrhizal P uptake pathway is not correlated with mycorrhizal responses in growth or total P uptake. New Phytol. 162, 511–524 (2004).
Google Scholar
Smith, M. D., Hartnett, D. C. & Wilson, G. W. T. Interacting influence of mycorrhizal symbiosis and competition on plant diversity in tallgrass prairie. Oecologia 121, 574–582 (1999).
Google Scholar
Bennett, J. A. et al. Plant-soil feedbacks and mycorrhizal type influence temperate forest population dynamics. Science 355, 181–184 (2017).
Google Scholar
Liao, H. et al. Soil microbes regulate forest succession in a subtropical ecosystem in China: Evidence from a mesocosm experiment. Plant Soil 430, 277–289 (2018).
Google Scholar
Awaydul, A. et al. Common mycorrhizal networks influence the distribution of mineral nutrients between an invasive plant, Solidago canadensis, and a native plant, Kummerowa striata. Mycorrhiza 29, 29–38 (2019).
Google Scholar
Callaway, R. M., Newingham, B., Zabinski, C. A. & Mahall, B. E. Compensatory growth and competitive ability of an invasive weed are enhanced by soil fungi and native neighbours. Ecol. Lett. 4, 429–433 (2001).
Google Scholar
Workman, R. E. & Cruzan, M. B. Common mycelial networks impact competition in an invasive grass. Am. J. Bot. 103, 1041–1049 (2016).
Google Scholar
Richardson, D. M., Allsopp, N., D’Antonio, C. M., Milton, S. J. & Rejmanek, M. Plant invasions—The role of mutualisms. Biol. Rev. Camb. Philos. Soc. 75, 65–93 (2000).
Google Scholar
Vogelsang, K. M. & Bever, J. D. Mycorrhizal densities decline in association with nonnative plants and contribute to plant invasion. Ecology 90, 399–407 (2009).
Google Scholar
Horton, T. R. Mycorrhizal Networks, Ecological Studies 224 (Springer, 2015).
Google Scholar
Lin, G., McCormack, M. L. & Guo, D. Arbuscular mycorrhizal fungal effects on plant competition and community structure. J. Ecol. 103, 1224–1232 (2015).
Google Scholar
Jasper, D. A., Abbott, J. K. & Robson, A. D. The effect of soil disturbance on vesicular-arbuscular mycorrhizal fungi in soils from different vegetation types. New Phytol. 118, 471–476 (1991).
Google Scholar
Jansa, J. et al. Diversity and structure of AMF communities as affected by tillage in a temperate soil. Mycorrhiza 12, 225–234 (2002).
Google Scholar
van der Heyde, M., Ohsowski, B., Abbott, L. K. & Hart, M. Arbuscular mycorrhizal fungus responses to disturbance are context-dependent. Mycorrhiza 27, 431–440 (2017).
Google Scholar
Verbruggen, E. & Kiers, E. T. Evolutionary ecology of mycorrhizal functional diversity in agricultural systems. Evol. Appl. 3, 547–560 (2010).
Google Scholar
Řezáčová, V., Řezáč, M., Gryndlerová, H., Wilson, G. W. T. & Michalová, T. Arbuscular mycorrhizal fungi favor invasive Echinops sphaerocephalus when grown in competition with native Inula conyzae. Sci. Rep. 10, 20287. https://doi.org/10.1038/s41598-020-77030-0 (2020).
Google Scholar
Callaway, R. M., Thelen, G. C., Barth, S., Ramsey, P. W. & Gannon, J. E. Soil fungi alter interactions between the invader Centaurea maculosa and North American natives. Ecology 85, 1062–1071 (2004).
Google Scholar
Abhilasha, D. & Joshi, J. Enhanced fitness due to higher fecundity, increased defence against a specialist and tolerance towards a generalist herbivore in an invasive annual plant. J. Plant Ecol. 2, 77–86 (2009).
Google Scholar
Shah, M. A., Reshi, Z. A. & Khasa, D. Arbuscular mycorrhizal status of some Kashmir Himalayan alien invasive plants. Mycorrhiza 20, 67–72 (2009).
Google Scholar
Shah, M. A., Reshi, Z. A. & Rasool, N. Plant invasions induce a shift in Glomalean spore diversity. Trop. Ecol. 51, 317–323 (2010).
Shah, M. A., Beaulieu, M.-E., Reshi, Z. A., Qureshi, S. & Khasa, D. P. A cross-city molecular biogeographic investigation of arbuscular mycorrhizas in Conyza canadensis rhizosphere across native and non-native regions. Ecol. Process. 4, 7. https://doi.org/10.1186/s13717-015-0034-0 (2015).
Google Scholar
Řezáčová, V., Konvalinková, T. & Řezáč, M. Decreased mycorrhizal colonization of Conyza canadensis (L.) Cronquist in invaded range does not affect fungal abundance in native plants. Biologia 75, 693–699 (2020).
Google Scholar
Shah, M. A., Reshi, Z. & Rashid, I. Mycorrhizal source and neighbour identity differently influence Anthemis cotula L. invasion in the Kashmir Himalaya, India. Appl. Soil Ecol. 40, 330–337 (2008).
Google Scholar
Řezáčová, V. et al. Plant invasion alters community structure and decreases diversity of arbuscular mycorrhizal fungal communities. Appl. Soil Ecol. 167, 104039 (2021).
Google Scholar
Řezáčová, V. et al. The root-associated arbuscular mycorrhizal fungal assemblages of exotic alien plants are simplified in invaded distribution ranges, but dominant species are retained: A trans-continental perspective. Environ. Microbiol. Rep. https://doi.org/10.1111/1758-2229.13108 (2022).
Google Scholar
Song, U. et al. Mowing: A cause of invasion, but also a potential solution for management of the invasive, alien plant species Erigeron annuus (L.) Pers.. J. Environ. Manag. 223, 530–536 (2018).
Google Scholar
Hempel, S. et al. Mycorrhizas in the Central European flora: Relationships with plant life history traits and ecology. Ecology 94, 1389–1399 (2013).
Google Scholar
Řezáčová, V., Řezáč, M., Líblová, Z., Michalová, T. & Heneberg, P. Stable colonization of native plants and early invaders by arbuscular mycorrhizal fungi after exposure to recent invaders from the Asteraceae family. IPSM 14, 147–155 (2021).
Google Scholar
Wilson, G. W. T. & Hartnett, D. C. Interspecific variation in plant responses to mycorrhizal colonization in tallgrass prairie. Am. J. Bot. 85, 1732–1738 (1998).
Google Scholar
Rinaudo, V., Barberi, P., Giovanneti, M. & van der Heijden, M. G. A. Mycorrhizal fungi suppress aggressive agricultural weeds. Plant Soil 333, 7–20 (2010).
Google Scholar
Veiga, R. S. L., Jansa, J., Frossard, E. & van der Heijden, M. G. A. Can arbuscular mycorrhizal fungi reduce the growth of agricultural weeds?. PLoS ONE 6, e27825 (2011).
Google Scholar
Boerner, R. E. J. Plant life span and response to inoculation with vesicular-arbuscular mycorrhizal fungi. Mycorrhiza 1, 153–161 (1992).
Google Scholar
Wilson, S. D. Tilman plant competition and resource availability in response to disturbance and fertilization. Ecology 74, 599–611 (1993).
Google Scholar
Xiao-Bin, W., Dian-Xiong, C. A. I., Hoogmoed, W. B., Oenema, O. & Perdok, U. D. Potential effect of conservation tillage on sustainable land use: A review of global long-term studies. Pedosphere 16, 587–595 (2006).
Google Scholar
Miransari, M. Contribution of arbuscular mycorrhizal symbiosis to plant growth under different types of soil stress. Plant Biol. 12, 563–569 (2010).
Google Scholar
Latef, A. A. H. A. et al. Arbuscular mycorrhizal symbiosis and abiotic stress in plants: A review. J. Plant Biol. 59, 407–426 (2016).
Google Scholar
Richardson, D. M., Allsopp, N., D’Antonio, C. M., Milton, S. J. & Rejmanek, M. Plant invasions—The role of mutualisms. Biol. Rev. 75, 65–93 (2000).
Google Scholar
Řezáčová, V. et al. Mycorrhizal symbiosis induces plant carbon reallocation differently in C3 and C4 Panicum grasses. Plant Soil 425, 441–456 (2018).
Google Scholar
Newman, E. I. A method of estimating total length of root in a sample. J. Appl. Ecol. 3, 139–145 (1966).
Google Scholar
Bukovská, P., Gryndler, M., Gryndlerová, H., Püschel, D. & Jansa, J. Organic nitrogen-driven stimulation of arbuscular mycorrhizal fungal hyphae correlates with abundance of ammonia oxidizers. Front. Microbiol. 7, 711. https://doi.org/10.3389/fmicb.2016.00711 (2016).
Google Scholar
Hewitt, E. J. Sand and water culture methods used in the study of plant nutrition. CAB Tech. Commun. 22, 431–432 (1966).
Řezáčová, V. et al. Imbalanced carbon-for-phosphorus exchange between European arbuscular mycorrhizal fungi and non-native Panicum grasses—A case of dysfunctional symbiosis. Pedobiologia 62, 48–55 (2017).
Google Scholar
Řezáčová, V. et al. Little cross-feeding of the mycorrhizal networks shared between C3–Panicum bisulcatum and C4–Panicum maximum under different temperature regimes. Front. Microbiol. 9, 449 (2018).
Ohno, T. & Zibilske, L. M. Determination of low concentrations of phosphorus in soil extracts using malachite green. Soil Sci. Soc. Am. J. 55, 892–895 (1991).
Google Scholar
Thonar, C., Erb, A. & Jansa, J. Real-time PCR to quantify composition of arbuscular mycorrhizal fungal communities-marker design, verification, calibration and field validation. Mol. Ecol. Res. 12, 219–232 (2012).
Google Scholar
McGonigle, T. P., Miller, M. H., Evans, D. G., Fairchild, G. L. & Swan, J. A. A new method which gives an objective-measure of colonization of roots by vesicular arbuscular mycorrhizal fungi. New Phytol. 115, 495–501 (1990).
Google Scholar
Koske, R. E. & Gemma, J. N. A modified procedure for staining roots to detect VA-mycorrhizas. Mycol. Res. 92, 486–505 (1989).
Google Scholar
R Core Team. R: A Language and Environment for Statistical Computing. https://www.R-project.org/ (R Foundation for Statistical Computing, 2022)
Source: Ecology - nature.com