in

Artificial shelters provide suitable thermal habitat for a cold-blooded animal

  • Ellis, E. C., Beusen, A. H. W. & Goldewijk, K. K. Anthropogenic Biomes: 10,000 BCE to 2015 CE. Land. 9(5), 129 (2020).

    Article 

    Google Scholar 

  • Seto, K. C., Guneralp, B. & Hutyra, L. R. Global forecasts of urban expansion to 2030 and direct impacts on biodiversity and carbon pools. PNAS. 109, 16083–8 (2012).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Doherty, T. S., Hays, G. C. & Driscoll, D. A. Human disturbance causes widespread disruption of animal movement. Nat. Ecol. Evol. 5, 513–519 (2021).

    PubMed 
    Article 

    Google Scholar 

  • Frid, A. & Dill, L. Human-caused disturbance stimuli as a form of predation risk. Conserv. Ecol. 6, 11 (2002).

    Google Scholar 

  • Rodgers, J. A. & Schwikert, S. T. Buffer-zone distances to protect foraging and loafing waterbirds from disturbance by personal watercraft and outboard-powered boats. Conserv. Bio. 16, 216–224 (2002).

    Article 

    Google Scholar 

  • Constantine, R., Brunton, D. H. & Dennis, T. Dolphin-watching tour boats change bottlenose dolphin (Tursiops truncates) behaviour. Biol. Conserv. 117, 299–307 (2004).

    Article 

    Google Scholar 

  • Gill, J. A., Sutherland, W. J. & Watkinson, A. R. A method to quantify the effects of human disturbance on animal populations. J. Appl. Ecol. 33, 786–792 (1996).

    Article 

    Google Scholar 

  • King, J. M. & Heinen, J. T. An assessment of the behaviors of overwintering manatees as influenced by interactions with tourists at two sites in central Florida. Biol. Conserv 117, 227–234 (2004).

    Article 

    Google Scholar 

  • Stockwell, C. A., Bateman, G. C. & Berger, J. Conflicts in national parks: A case study of helicopters and bighorn sheep time budgets at the Grand Canyon. Biol. Conserv 56, 317–328 (1991).

    Article 

    Google Scholar 

  • Diamond, J. M. The design of a nature reserve system for Indone-Asian New Guinea. In Conservation Biology: The Science of Scarcity and Cliversity (ed. Soule, M.) 485–503 (Sinauer, Sunderland, Massachusetts, 1986).

  • Ceballos, G., García, A. & Ehrlich, P. R. The sixth extinction crisis loss of animal populations and species. J. Cosmol. 8, 1821–1831 (2010).

    Google Scholar 

  • Kerr, J. T. & Deguise, I. Habitat loss and the limits to endangered species recovery. Ecol. Lett. 7, 1163–1169 (2004).

    Article 

    Google Scholar 

  • Mbora, D. N. M. & McPeek, M. A. Host density and human activities mediate increased parasite prevalence and richness in primates threatened by habitat loss and fragmentation. J. Anim. Ecol. 78, 210–218 (2009).

    PubMed 
    Article 

    Google Scholar 

  • Low, T. The New Nature (Penguin Books Limited, 2003).

    Google Scholar 

  • Baxter-Gilbert, J., Riley, J. L. & Measey, J. Fortune favors the bold toad: Urban-derived behavioral traits may provide advantages for invasive amphibian populations. Behav. Ecol. Sociobiol. 75, 130 (2021).

    Article 

    Google Scholar 

  • Coleman, J. L. & Barclay, R. M. R. Prey availability and foraging activity of grassland bats in relation to urbanization. J. Mammal. 94, 1111–1122 (2013).

    Article 

    Google Scholar 

  • Castellano, M. J. & Valone, T. J. Effects of livestock removal and perennial grass recovery on the lizards of a desertified arid grassland. J. Arid Environ. 66, 87e95 (2006).

    Article 

    Google Scholar 

  • Huey, R. B. Temperature, physiology, and the ecology of reptiles. In Biology of the Reptilia (eds. Gans, C., & Pough, F.H.) Vol. 12. (Academic Press, London, 1982).

  • White, D. et al. Assessing risks to biodiversity from future landscape change. Conserv. Biol. 11, 349360 (1997).

    Article 

    Google Scholar 

  • Carpio, A. J., Oteros, J., Tortosa, F. S. & Guerrero-Casado, J. Land use and biodiversity patterns of the herpetofauna: The role of olive groves. Acta Oecol. 70, 103–111 (2016).

    Article 

    Google Scholar 

  • Geyle, H. M., Tingley, R., Amey, A. P. & Chapple, D. G. Reptiles on the brink: Identifying the Australian terrestrial snake and lizard species most at risk of extinction. Pac. Conserv. Biol. 27, 3–12 (2021).

    Article 

    Google Scholar 

  • Doherty, T. S. et al. Reptile responses to anthropogenic habitat modification: A global meta-analysis. Glob. Ecol. Biogeogr. 29(7), 1265–1279 (2020).

    Article 

    Google Scholar 

  • Hu, Y., Doherty, T. S. & Jessop, T. S. How influential are squamate reptile traits in explaining population responses to environmental disturbances?. Wildl. Res. 47(3), 249–259 (2020).

    Article 

    Google Scholar 

  • Poole, G. & Berman, C. An ecological perspective on in-stream temperature: natural heat dynamics and mechanisms of human-caused thermal degradation. Environ. Manag. 27, 787–802 (2001).

    CAS 
    Article 

    Google Scholar 

  • Tang, X. et al. Human activities enhance radiation forcing through surface albedo associated with vegetation in beijing. Remote Sens. 12(5), 837 (2020).

    Article 

    Google Scholar 

  • Barna, A., Masum, A. K. M., Hossain, M. E., Bahadur, E.H. & Alam, M. S. A study on human activity recognition using gyroscope, accelerometer, temperature and humidity data. In 2019 International Conference on Electrical, Computer and Communication Engineering (ECCE), pp. 1–6 (2019).

  • Moore, M. & Seigel, R. A. No place to nest or bask: Effects of human disturbance on the nesting and basking habits of yellow-blotched map turtles (Graptemys flavimaculata). J. Biol. Conserv. 130(3), 386–393 (2006).

    Article 

    Google Scholar 

  • Bonnet, X., Naulleau, G. & Shine, R. The dangers of leaving home: Dispersal and mortality in snakes. Biol. Conserv. 89(1), 39–50 (1999).

    Article 

    Google Scholar 

  • Haxton, T. Road mortality of Snapping Turtles, Chelydra serpentina, in central Ontario during their nesting period. Can. Field-Nat. 114(1), 106–110 (2000).

    Google Scholar 

  • Koenig, J., Shine, R. & Shea, G. L. The ecology of an Australian reptile icon: How do blue-tongued lizards (Tiliqua scincoides) survive in suburbia?. Wildl. Res. 28(3), 214–227 (2001).

    Article 

    Google Scholar 

  • Uetz, P. How many Reptile species?. Herpetol. Rev. 31, 13–15 (2000).

    Google Scholar 

  • Todd, R. L., Steven, P., Rowland, G. & Oldham, G. Herpetological observations from field expeditions to North Karnataka and Southwest Maharashtra, India. Herpetol. Bull. 112, 17–37 (2010).

    Google Scholar 

  • Sathish Kumar, V. M. The conservation of Indian Reptiles: An approach with molecular aspects. Reptile Rap. 14, 2–8 (2012).

    Google Scholar 

  • Berryman, A. A. & Hawkins, B. A. The refuge as an integrating concept in ecology and evolution. Oikos. 115, 92–196 (2006).

    Article 

    Google Scholar 

  • Webb, J. K., Pringle, R. M. & Shine, R. How do nocturnal snakes select diurnal retreat sites?. Copeia 2004, 919–925 (2004).

    Article 

    Google Scholar 

  • Skinner, M. & Miller, N. Aggregation and social interaction in garter snakes (Thamnophis sirtalis sirtalis). Behav. Ecol. Sociobiol. 74, 51 (2020).

    Article 

    Google Scholar 

  • Aubret, F. & Shine, R. Causes and consequences of aggregation by neonatal tiger snakes (Notechis scutatus, Elapidae). Austral Ecol. 34(2), 210–217 (2009).

    Article 

    Google Scholar 

  • Myres, B. & Eells, M. Thermal aggregation in Boa constrictor. Herpetologica 24(1), 61–66 (1968).

    Google Scholar 

  • Parrish, J. K. & Edelstein-keshet, L. Coinplexity, pattern, and evolutionary trade-offs in animal aggregation. Science 284, 99–101 (1999).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Trevesa, A. Theory and method in studies of vigilance and aggregation. Anim. Behav. 60, 711–722 (2000).

    Article 

    Google Scholar 

  • Greene, H. W. Snakes (University of California Press, 1997).

    Book 

    Google Scholar 

  • Huey, R. B., Peterson, C. R., Arnold, S. J. & Porter, W. P. Hot rocks and not-so-hot rocks: Retreat-site selection by garter snakes and its thermal consequences. Ecology 70, 931–944 (1989).

    Article 

    Google Scholar 

  • Christian, K. & Weavers, B. Analysis of activity and energetics of the lizard Varanus rosenbergi. Copeia 1994, 289–295 (1994).

    Article 

    Google Scholar 

  • Autumn, K. & de Nardo, D. F. Behavioural thermoregulation increases growth rate in nocturnal lizard. J. Herpetol. 29, 157–162 (1995).

    Article 

    Google Scholar 

  • Milne, T., Bull, C. M. & Hutchinson, M. N. Use of burrows by the endangered pygmy blue-tongue lizard, Tiliqua adelaidensis (Scincidae). Wildl. Res. 30, 523–528 (2003).

    Article 

    Google Scholar 

  • Sunday, J. M. et al. Thermal-safety margins and the necessity of thermoregulatory behavior across latitude and elevation. PNAS. 111, 5610–5615 (2014).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Kearney, M., Shine, R. & Porter, W. P. The potential for behavioral thermoregulation to buffer ‘“cold-blooded”’ animals against climate warming. PNAS 106, 3835–3840 (2009).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Stevenson, D. J., Dyer, K. J. & Willis-Stevenson, B. A. Survey and monitoring of the eastern indigo snake in georgia. Southeast. Nat. 2(3), 393–408 (2003).

    Article 

    Google Scholar 

  • Zappalorti, R. T. & Reinert, H. K. Artificial refugia as a habitat-improvement strategy for snake conservation. Contrib. Herpetol. 11, 369–375 (1994).

    Google Scholar 

  • Griffith, B., Scott, J. M., Carpenter, J. W. & Reed, C. Translocation as a species conservation tool: Status and strategy. Science 245, 477–480 (1989).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Mullin, S. J. Snakes Ecology and Conservation (eds. Stephen, J. M. & Richard, A. S.). (Cornell University Press, 2011).

  • Lei, J., Booth, D. T. & Dwyer, R. G. Spatial ecology of yellow-spotted goannas adjacent to a sea turtle nesting beach. Aust. J. Zool. 65, 77–86 (2017).

    Article 

    Google Scholar 

  • Ermi, Z. Snakes of China. (Anhui Science and Technology Press, 2006).

  • Schulz, K. D. A Monograph of the Colubrid Snakes of the Genus Elaphe Fitzinger (Czech Republic, Koeltz Scientific Books, 1996).

    Google Scholar 

  • Pallas, P. S. Reise durch verschiedene Provinzen des Russischen Reiches, Vol. 2. 744 (Kaiserl. Akad. Wiss., St. Petersburg, 1773).

  • Auffenberg, W., Arian, Q. N. & Kurshid, N. Preferred habitat, home range and movement patterns of Varanus bengalensis in southern Pakistan. Mertensiella 2, 7–28 (1991).

    Google Scholar 

  • McDiarmid, R. W. Reptile Biodiversity: Standard Methods for Inventory and Monitoring. (University of California Press, 2002).

  • Riley, J. L., Baxter-gilbert, J. H. & Litzgus, J. D. A comparison of three external transmitter attachment methods for snakes. Wildl. Soc. Bull. 41(1), 132–139 (2017).

    Article 

    Google Scholar 

  • Meine, C., & Archibald, G. The Cranes: Status Survey and Conservation Action Plan (IUCN, 1996).

  • Mori, A. & Toda, M. Body temperature of subtropical snakes at night: How cold is their blood?. Curr. Herpetol. 37(2), 151–157 (2018).

    Article 

    Google Scholar 

  • Crane, M., Silva, I., Marshall, B. M. & Strine, C. T. Lots of movement, little progress: A review of reptile home range literature. PeerJ 9, e11742 (2021).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Calabrese, J. M., Fleming, C. H. & Gurarie, E. ctmm: An R package for analyzing animal relocation data as a continuous-time stochastic process. Methods Ecol. Evol. 7, 1124–1132 (2016).

    Article 

    Google Scholar 

  • Fleming, C. H. & Calabrese, J. M. A new kernel density estimator for accurate home-range and species-range area estimation. Methods Ecol. Evol. 8, 571–579 (2017).

    Article 

    Google Scholar 

  • Fleming, C. H. et al. From fine-scale foraging to home ranges: A semivariance approach to identifying movement modes across spatiotemporal scales. Am. Nat. 183, 154–167 (2014).

    Article 

    Google Scholar 

  • Fleming, C. H., Noonan, M. J., Medici, E. P. & Calabrese, J. M. Overcoming the challenge of small effective sample sizes in home-range estimation. Methods Ecol. Evol. 10, 1679–1689 (2019).

    Article 

    Google Scholar 

  • Uhlenbeck, G. E. & Ornstein, L. S. On the theory of the Brownian motion. Phys. Rev. 36, 823 (1930).

    CAS 
    MATH 
    Article 

    Google Scholar 

  • Bürkner, P. C. brms: An R package for Bayesian multilevel models using Stan. J. Stat. Softw. 80, 1–28 (2017).

    Article 

    Google Scholar 

  • Bhattacharyya, A. On a measure of divergence between two statistical populations defined by their probability distributions. News Bull. Calcutta Math. Soc. 35, 99–109 (1943).

    MathSciNet 
    MATH 

    Google Scholar 

  • Winner, K. et al. Statistical inference for home range overlap. Methods Ecol. Evol. 9, 1679–1691 (2018).

    Article 

    Google Scholar 

  • R Core Team. R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna (2016). http://www.R-project.org. Accessed September 2022.

  • Calenge, A. The package ‘“adehabitat”’ for the R software: Tool for the analysis of space and habitat use by animals. Ecol. Modell. 197, 516–519 (2006).

    Article 

    Google Scholar 

  • Manley, B. F. J., McDonald, L. L. & Thomas, D. L. Resource Selection by Animals: Statistical Design and Analysis for Field Studies (Chapman and Hall, 1993).

    Book 

    Google Scholar 


  • Source: Ecology - nature.com

    More rain, less often

    MIT Energy Conference focuses on climate’s toughest challenges