in

Assessing a megadiverse but poorly known community of fishes in a tropical mangrove estuary through environmental DNA (eDNA) metabarcoding

  • Levin, L. A. et al. The function of marine critical transition zones and the importance of sediment biodiversity. Ecosystems 4, 430–451 (2001).

    CAS 

    Google Scholar 

  • Wagner, G. M. & Sallema-Mtui, R. in Estuaries: A Lifeline of Ecosystem Services in the Western Indian Ocean Estuaries of the World (eds S. Diop, P. Scheren, & J. Machiwa) 183–207 (2016).

  • Brown, C. J. et al. The assessment of fishery status depends on fish habitats. Fish Fish. 20, 1–14 (2019).

    CAS 

    Google Scholar 

  • De La Morinière, E. C., Pollux, B., Nagelkerken, I. & Van der Velde, G. Post-settlement life cycle migration patterns and habitat preference of coral reef fish that use seagrass and mangrove habitats as nurseries. Estuar. Coast. Shelf Sci. 55, 309–321 (2002).

    ADS 

    Google Scholar 

  • Branton, M. & Richardson, J. S. Assessing the value of the umbrella-species concept for conservation planning with meta-analysis. Conserv. Biol. 25, 9–20 (2011).

    PubMed 

    Google Scholar 

  • Dudgeon, D. et al. Freshwater biodiversity: Importance, threats, status and conservation challenges. Biol. Rev. 81, 163–182 (2006).

    PubMed 

    Google Scholar 

  • Zainal Abidin, D. H. et al. DNA-based taxonomy of a mangrove-associated community of fishes in Southeast Asia. Sci. Rep. 11, 1–15. https://doi.org/10.1038/s41598-021-97324-1 (2021).

    CAS 
    Article 

    Google Scholar 

  • Gauthier, G. et al. Long-term monitoring at multiple trophic levels suggests heterogeneity in responses to climate change in the Canadian Arctic tundra. Philos. Trans. Roy. Soc. B Biol. Sci. 368, 20120482 (2013).

    Google Scholar 

  • Valentini, A. et al. Next-generation monitoring of aquatic biodiversity using environmental DNA metabarcoding. Mol. Ecol. 25, 929–942 (2016).

    CAS 
    PubMed 

    Google Scholar 

  • Myers, N., Mittermeier, R. A., Mittermeier, C. G., Da Fonseca, G. A. & Kent, J. Biodiversity hotspots for conservation priorities. Nature 403, 853 (2000).

    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Chong, V. C., Lee, P. K. & Lau, C. M. Diversity, extinction risk and conservation of Malaysian fishes. J. Fish Biol. 76, 2009–2066. https://doi.org/10.1111/j.1095-8649.2010.02685.x (2010).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • Zainal Abidin, D. H. et al. Ichthyofauna of Sungai Merbok Mangrove Forest Reserve, northwest Peninsular Malaysia, and its adjacent marine waters. Check List 17, 601–631. https://doi.org/10.15560/17.2.601 (2021).

    Article 

    Google Scholar 

  • Ong, J. et al. in Hutan paya laut Merbok, Kedah: Pengurusan hutan, persekitaran fizikal dan kepelbagaian flora. Vol. 23 Siri kepelbagaian biologi hutan (ed Ku Aman KA Abd Rahim AR, Abu Hassan MN, Abdullah M, Nor Hazliza MB, Latiff A) 21–33 (Jabatan Perhutanan Semenanjung Malaysia, 2015).

  • Hookham, B., Shau-Hwai, A. T., Dayrat, B. & Hintz, W. A baseline measure of tree and gastropod biodiversity in replanted and natural mangrove stands in Malaysia: Langkawi Island and Sungai Merbok. Trop. Life Sci. Res. 25, 1 (2014).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Jamaluddin, J. A. F. et al. DNA barcoding of shrimps from a mangrove biodiversity hotspot. Mitochondrial DNA Part A 30, 618–625. https://doi.org/10.1080/24701394.2019.1597073 (2019).

    CAS 
    Article 

    Google Scholar 

  • Mansor, M., Mohammad-Zafrizal, M., Nur-Fadhilah, M., Khairun, Y. & Wan-Maznah, W. Temporal and spatial variations in fish assemblage structures in relation to the physicochemical parameters of the Merbok estuary, Kedah. J. Nat. Sci. Res. 2, 110–127 (2012).

    Google Scholar 

  • Alshari, N. F. M. A. H. et al. Metabarcoding of Fish Larvae in the Merbok River reveals species diversity and distribution along its mangrove environment. Zool. Stud. 60, 60–76. https://doi.org/10.6620/ZS.2021 (2021).

    Article 

    Google Scholar 

  • Deiner, K., Fronhofer, E. A., Mächler, E., Walser, J.-C. & Altermatt, F. Environmental DNA reveals that rivers are conveyer belts of biodiversity information. Nat. Commun. 7, 1–9 (2016).

    Google Scholar 

  • Hupało, K. et al. An urban Blitz with a twist: Rapid biodiversity assessment using aquatic environmental DNA. Environ. DNA 3, 200–213 (2020).

    Google Scholar 

  • Bohmann, K. et al. Environmental DNA for wildlife biology and biodiversity monitoring. Trends Ecol. Evol. 29, 358–367 (2014).

    PubMed 

    Google Scholar 

  • Taberlet, P., Coissac, E., Hajibabaei, M. & Rieseberg, L. H. Environmental DNA. Mol. Ecol. 21, 1789–1793 (2012).

    CAS 
    PubMed 

    Google Scholar 

  • Ahn, H. et al. Evaluation of fish biodiversity in estuaries using environmental DNA metabarcoding. PLoS ONE 15, e0231127 (2020).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Polanco, F. A. et al. Detecting aquatic and terrestrial biodiversity in a tropical estuary using environmental DNA. Biotropica 53, 1606–1619 (2021).

    Google Scholar 

  • Zhang, H., Yoshizawa, S., Iwasaki, W. & Xian, W. Seasonal fish assemblage structure using environmental DNA in the Yangtze Estuary and its adjacent waters. Front. Mar. Sci. 6, 515. https://doi.org/10.3389/fmars.2019.00515 (2019).

    Article 

    Google Scholar 

  • Stat, M. et al. Ecosystem biomonitoring with eDNA: Metabarcoding across the tree of life in a tropical marine environment. Sci. Rep. 7, 1–11 (2017).

    ADS 
    CAS 

    Google Scholar 

  • West, K. et al. Large-scale eDNA metabarcoding survey reveals marine biogeographic break and transitions over tropical north-western Australia. Divers. Distrib. 27, 1942–1957 (2021).

    Google Scholar 

  • Hallam, J., Clare, E. L., Jones, J. I. & Day, J. J. Biodiversity assessment across a dynamic riverine system: A comparison of eDNA metabarcoding versus traditional fish surveying methods. Environ. DNA 3, 1247–1266 (2021).

    Google Scholar 

  • Seymour, M. et al. Environmental DNA provides higher resolution assessment of riverine biodiversity and ecosystem function via spatio-temporal nestedness and turnover partitioning. Commun. Biol. 4, 1–12 (2021).

    Google Scholar 

  • Aglieri, G. et al. Environmental DNA effectively captures functional diversity of coastal fish communities. Mol. Ecol. 30, 3127–3139 (2021).

    PubMed 

    Google Scholar 

  • Fujii, K. et al. Environmental DNA metabarcoding for fish community analysis in backwater lakes: A comparison of capture methods. PLoS ONE 14, e0210357 (2019).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Lecaudey, L. A., Schletterer, M., Kuzovlev, V. V., Hahn, C. & Weiss, S. J. Fish diversity assessment in the headwaters of the Volga River using environmental DNA metabarcoding. Aquat. Conserv. Mar. Freshwat. Ecosyst. 29, 1785–1800 (2019).

    Google Scholar 

  • Zou, K. et al. eDNA metabarcoding as a promising conservation tool for monitoring fish diversity in a coastal wetland of the Pearl River Estuary compared to bottom trawling. Sci. Total Environ. 702, 134704 (2020).

    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Klymus, K. E., Marshall, N. T. & Stepien, C. A. Environmental DNA (eDNA) metabarcoding assays to detect invasive invertebrate species in the Great Lakes. PLoS ONE 12, 24. https://doi.org/10.1371/journal.pone.0177643 (2017).

    CAS 
    Article 

    Google Scholar 

  • Wilson, C. et al. Tracking ghosts: Combined electrofishing and environmental DNA surveillance efforts for Asian carps in Ontario waters of Lake Erie. Manag. Biol. Invasion 5, 225–231. https://doi.org/10.3391/mbi.2014.5.3.05 (2014).

    Article 

    Google Scholar 

  • Alexander, J. B. et al. Development of a multi-assay approach for monitoring coral diversity using eDNA metabarcoding. Coral Reefs 39, 159–171. https://doi.org/10.1007/s00338-019-01875-9 (2020).

    Article 

    Google Scholar 

  • Port, J. A. et al. Assessing vertebrate biodiversity in a kelp forest ecosystem using environmental DNA. Mol. Ecol. 25, 527–541. https://doi.org/10.1111/mec.13481 (2016).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • Fritts, A. K. et al. Development of a quantitative PCR method for screening ichthyoplankton samples for bigheaded carps. Biol. Invasions 21, 1143–1153 (2019).

    Google Scholar 

  • Maruyama, A., Nakamura, K., Yamanaka, H., Kondoh, M. & Minamoto, T. The release rate of environmental DNA from juvenile and adult fish. PLoS ONE 9, e114639 (2014).

    ADS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Amberg, J. J., Merkes, C. M., Stott, W., Rees, C. B. & Erickson, R. A. Environmental DNA as a tool to help inform zebra mussel, Dreissena polymorpha, management in inland lakes. Manag. Biol. Invasion 10, 96 (2019).

    Google Scholar 

  • Gu, Z., Gu, L., Eils, R., Schlesner, M. & Brors, B. Circlize implements and enhances circular visualization in R. Bioinformatics 30, 2811–2812. https://doi.org/10.1093/bioinformatics/btu393 (2014).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • Zainal Abidin, D. H. & Noor Adelyna, M. A. Environmental DNA (eDNA) Metabarcoding as a Sustainable Tool of Coastal Biodiversity Assessment in Universities as Living Labs for Sustainable Development 211–225 (Springer, 2020).

  • Sard, N. M. et al. Comparison of fish detections, community diversity, and relative abundance using environmental DNA metabarcoding and traditional gears. Environ. DNA 1, 368–384 (2019).

    Google Scholar 

  • Hoffman, J. C., Kelly, J. R., Trebitz, A. S., Peterson, G. S. & West, C. W. Effort and potential efficiencies for aquatic non-native species early detection. Can. J. Fish. Aquat. Sci. 68, 2064–2079 (2011).

    Google Scholar 

  • Yamamoto, S. et al. Environmental DNA metabarcoding reveals local fish communities in a species-rich coastal sea. Sci. Rep. 7, 1–12 (2017).

    Google Scholar 

  • Whitfield, A. K. Fish species in estuaries—From partial association to complete dependency. J. Fish Biol. 97, 1262–1264 (2020).

    PubMed 

    Google Scholar 

  • Carpenter, K. & Niem, V. The living marine resources of the Western Central Pacific. Volume 5. Bony Fishes Part 3 (Menidae to Pomacentridae). Vol. 5, 2791–3380 (Food and Agriculture Organization of the United Nations, 2001).

  • Carpenter, K. E. & Niem, V. FAO species identification guide for fishery purposes. The Living Marine Resources of the Western Central Pacific. Volume 6. Bony Fishes Part 4 (Labridae to Latimeriidae), Estuarine Crocodiles, Sea Turtles, Sea Snakes and Marine Mammals. Vol. 6, 3381–4218 (Food and Agriculture Organization of the United Nations, 2001).

  • Carpenter, K. E. & Niem, V. H. The living marine resources of the Western Central Pacific: Batoid fishes, chimaera and bony fishes part 1 (Elopidae to Linophrynidae). Vol. 3, 1397–2068 (Food and Agriculture Organization of the United Nations, 1999).

  • Carpenter, K. E. & Niem, V. H. The living marine resources of the Western Central Pacific. Volume 4. Bony Fishes Part 2 (Mugilidae to Carangidae). Vol. 4, 2069–2790 (Food and Agriculture Organization of the United Nations, 1999).

  • Benson, D. A. et al. GenBank. Nucleic Acids Res. 46, D41–D47 (2018).

    CAS 
    PubMed 

    Google Scholar 

  • Pentinsaari, M., Ratnasingham, S., Miller, S. E. & Hebert, P. D. N. BOLD and GenBank revisited—Do identification errors arise in the lab or in the sequence libraries?. PLoS ONE 15, e0231814–e0231814. https://doi.org/10.1371/journal.pone.0231814 (2020).

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Ardura, A., Planes, S. & Garcia-Vazquez, E. Applications of DNA barcoding to fish landings: Authentication and diversity assessment. Zookeys 365, 49–65. https://doi.org/10.3897/zookeys.365.6409 (2013).

    Article 

    Google Scholar 

  • ZainalAbidin, D. H. et al. Population genetics of the black scar oyster, Crassostrea iredalei: Repercussion of anthropogenic interference. Mitochondrial DNA Part A 27, 647–658 (2016).

    CAS 

    Google Scholar 

  • Kelly, R. P. et al. Genetic and manual survey methods yield different and complementary views of an ecosystem. Front. Mar. Sci. 3, 283 (2017).

    Google Scholar 

  • Ratnasingham, S. & Hebert, P. D. BOLD: The barcode of life data system (http://www.barcodinglife.org). Mol. Ecol. Notes 7, 355–364 (2007).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Barnes, M. A. & Turner, C. R. The ecology of environmental DNA and implications for conservation genetics. Conserv. Genet. 17, 1–17. https://doi.org/10.1007/s10592-015-0775-4 (2016).

    CAS 
    Article 

    Google Scholar 

  • Vasconcelos, R. P. et al. Global patterns and predictors of fish species richness in estuaries. J. Anim. Ecol. 84, 1331–1341 (2015).

    PubMed 

    Google Scholar 

  • Shah, A. S. R. M., Hashim, Z. H. & Sah, S. A. M. Freshwater fishes of Gunung Jerai, Kedah Darul Aman: A preliminary study. Trop. Life Sci. Res. 20, 59 (2009).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Md. Zain, K. et al. Fish diversity along streams in Ulu Muda Forest Reserve, Kedah, Peninsular Malaysia. Malayan Nat. J. 73, 349–361 (2021).

    Google Scholar 

  • Thomsen, P. F. et al. Monitoring endangered freshwater biodiversity using environmental DNA. Mol. Ecol. 21, 2565–2573 (2012).

    CAS 
    PubMed 

    Google Scholar 

  • Wang, S. et al. Methodology of fish eDNA and its applications in ecology and environment. Sci. Total Environ. 755, 142622. https://doi.org/10.1016/j.scitotenv.2020.142622 (2021).

    ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 

  • Deiner, K. et al. Environmental DNA metabarcoding: Transforming how we survey animal and plant communities. Mol. Ecol. 26, 5872–5895 (2017).

    PubMed 

    Google Scholar 

  • Southeast Asian Fisheries Development Centre (SEAFDEC). Status and trends of sharks fisheries in South East Asia in Malaysia Shark Fisheries (Fisheries and Resources Monitoring System (FIRMS), Rome, 2004).

  • Zhang, S., Zhao, J. & Yao, M. A comprehensive and comparative evaluation of primers for metabarcoding eDNA from fish. Methods Ecol. Evol. 11, 1609–1625 (2020).

    ADS 

    Google Scholar 

  • Doi, H. et al. Environmental DNA analysis for estimating the abundance and biomass of stream fish. Freshw. Biol. 62, 30–39 (2017).

    CAS 

    Google Scholar 

  • Hayami, K. et al. Effects of sampling seasons and locations on fish environmental DNA metabarcoding in dam reservoirs. Ecol. Evol. 10, 5354–5367 (2020).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Collins, R. A. et al. Persistence of environmental DNA in marine systems. Commun. Biol. https://doi.org/10.1038/s42003-018-0192-6 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Morey, K. C., Bartley, T. J. & Hanner, R. H. Validating environmental DNA metabarcoding for marine fishes in diverse ecosystems using a public aquarium. Environ. DNA 2, 330–342 (2020).

    Google Scholar 

  • Shaw, J. L. et al. Comparison of environmental DNA metabarcoding and conventional fish survey methods in a river system. Biol. Cons. 197, 131–138 (2016).

    Google Scholar 

  • Siegenthaler, A. et al. Metabarcoding of shrimp stomach content: Harnessing a natural sampler for fish biodiversity monitoring. Mol. Ecol. Resour. 19, 206–220. https://doi.org/10.1111/1755-0998.12956 (2019).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • Stoeckle, M. Y., Das Mishu, M. & Charlop-Powers, Z. Improved environmental DNA reference library detects overlooked marine fishes in New Jersey, United States. Front. Mar. Sci. 7, 226 (2020).

    Google Scholar 

  • Collins, R. A. et al. Non-specific amplification compromises environmental DNA metabarcoding with COI. Methods Ecol. Evol. 10, 1985–2001 (2019).

    Google Scholar 

  • Hebert, P. D., Ratnasingham, S. & De Waard, J. R. Barcoding animal life: Cytochrome c oxidase subunit 1 divergences among closely related species. Proc. Roy. Soc. Lond. Ser. B Biol. Sci. 270, S96–S99 (2003).

    CAS 

    Google Scholar 

  • Miya, M. et al. MiFish, a set of universal PCR primers for metabarcoding environmental DNA from fishes: Detection of more than 230 subtropical marine species. Roy. Soc. Open Sci. 2, 150088 (2015).

    ADS 
    CAS 

    Google Scholar 

  • Mariani, S., Baillie, C., Colosimo, G. & Riesgo, A. Sponges as natural environmental DNA samplers. Curr. Biol. 29, R401–R402 (2019).

    CAS 
    PubMed 

    Google Scholar 

  • Bylemans, J., Gleeson, D. M., Duncan, R. P., Hardy, C. M. & Furlan, E. M. A performance evaluation of targeted eDNA and eDNA metabarcoding analyses for freshwater fishes. Environ. DNA 1, 402–414 (2019).

    Google Scholar 

  • Chin, A. T. et al. Beta diversity changes in estuarine fish communities due to environmental change. Mar. Ecol. Prog. Ser. 603, 161–173 (2018).

    ADS 

    Google Scholar 

  • Sloterdijk, H. et al. Composition and structure of the larval fish community related to environmental parameters in a tropical estuary impacted by climate change. Estuar. Coast. Shelf Sci. 197, 10–26 (2017).

    ADS 

    Google Scholar 

  • Malaysian Meteorological Department. Tinjauan Cuaca bagi Tempoh November 2017 hingga April 2018. National Climate Centre: Ministry of Science, Technology and Innovation. Retrieved on February 1st, 2018, from https://www.met.gov.my/iklim/ramalanbermusim/ (2017).

  • Leray, M. et al. A new versatile primer set targeting a short fragment of the mitochondrial COI region for metabarcoding metazoan diversity: Application for characterizing coral reef fish gut contents. Front. Zool. 10, 34 (2013).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Geller, J., Meyer, C., Parker, M. & Hawk, H. Redesign of PCR primers for mitochondrial cytochrome c oxidase subunit I for marine invertebrates and application in all-taxa biotic surveys. Mol. Ecol. Resour. 13, 851–861 (2013).

    CAS 
    PubMed 

    Google Scholar 

  • Illumina. 16S Metagenomic Sequencing Library Preparation. https://support.illumina.com/documents/documentation/chemistry_documentation/16s/16s-metagenomic-library-prep-guide-15044223-b.pdf 1–28 (2013).

  • Andrews, S. FastQC: A Quality Control Tool for High Throughput Sequence Data. (Babraham Bioinformatics (Babraham Institute, 2010).

  • Ewels, P., Magnusson, M., Lundin, S. & Käller, M. MultiQC: Summarize analysis results for multiple tools and samples in a single report. Bioinformatics 32, 3047–3048 (2016).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Edgar, R. C. UPARSE: Highly accurate OTU sequences from microbial amplicon reads. Nat. Methods 10, 996–998 (2013).

    CAS 
    PubMed 

    Google Scholar 

  • Andruszkiewicz, E. A. et al. Biomonitoring of marine vertebrates in Monterey Bay using eDNA metabarcoding. PLoS ONE 12, e0176343 (2017).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Goldberg, C. S. et al. Critical considerations for the application of environmental DNA methods to detect aquatic species. Methods Ecol. Evol. 7, 1299–1307 (2016).

    Google Scholar 

  • Fricke, R., Eschmeyer, W. N. & Van der Laan, R. Eschmeyer’s Catalog of Fishes: Genera, species, references. http://www.calacademy.org/scientists/catalog-of-fishes-family-group-names/ (2021).

  • Ebert, D. A. & Fowler, S. Sharks of the World (Princeton University Press, 2013).

    Google Scholar 

  • R Core Team. RStudio: integrated development for R. RStudio, Inc., Boston, MA URL http://www.rstudio.com42, 14 (2015).

  • McMurdie, P. J. & Holmes, S. Phyloseq: An R package for reproducible interactive analysis and graphics of microbiome census data. PLoS ONE 8, e61217 (2013).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Oksanen, J. et al. Package ‘vegan’. Commun. Ecol. Pack. 2, 1–295 (2013).

    Google Scholar 

  • Wickham, H. ggplot2: Elegant Graphics for Data Analysis (Springer, 2016).

    MATH 

    Google Scholar 


  • Source: Ecology - nature.com

    Identifying driving factors of urban land expansion using Google Earth Engine and machine-learning approaches in Mentougou District, China

    Processing waste biomass to reduce airborne emissions