in

Autochthony and isotopic niches of benthic fauna at shallow-water hydrothermal vents

[adace-ad id="91168"]
  • Desbruyères, D., Segonzac, M. & Bright, M. Handbook of deep-Sea Hydrothermal Vent Fauna 2nd edn. (Biologiezentrum, 2006).

    Google Scholar 

  • Van Dover, C. L. The Ecology of Deep-Sea Hydrothermal Vents (Princeton University Press, 2000).

    Book 

    Google Scholar 

  • Tarasov, V. G., Gebruk, A. V., Mironov, A. N. & Moskalev, L. I. Deep-sea and upper sublittoral hydrothermal vent communities: Two different phenomena?. Chem. Geol. 224, 5–39. https://doi.org/10.1016/j.chemgeo.2005.07.021 (2005).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • Lonsdale, P. Clustering of suspension-feeding macrobenthos near abyssal hydrothermal vents at oceanic spreading centers. Deep Sea Res. 24, 857–863. https://doi.org/10.1016/0146-6291(77)90478-7 (1977).

    ADS 
    Article 

    Google Scholar 

  • Reid, W. D. et al. Spatial differences in East Scotia Ridge hydrothermal vent food webs: Influences of chemistry, microbiology and predation on trophodynamics. PLoS One 8, e65553. https://doi.org/10.1371/journal.pone.006555 (2013).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • Levin, L. A. et al. Hydrothermal vents and methane seeps: Rethinking the sphere of influence. Front. Mar. Sci. 3, 72. https://doi.org/10.3389/fmars.2016.00072 (2016).

    ADS 
    Article 

    Google Scholar 

  • Mullineaux, L. S. et al. Exploring the ecology of deep-sea hydrothermal vents in a metacommunity framework. Front. Mar. Sci. 5, 49. https://doi.org/10.3389/fmars.2018.00049 (2018).

    Article 

    Google Scholar 

  • Tarasov, V. G. Effects of shallow-water hydrothermal venting on biological communities of coastal marine ecosystems of the western Pacific. Adv. Mar. Biol. 50, 267–421. https://doi.org/10.1016/S0065-2881(05)50004-X (2006).

    CAS 
    Article 

    Google Scholar 

  • Dando, P. R. Biological communities at marine shallow-water vent and seep sites. In The Vent and Seep Biota (ed. Kiel, S.) 333–378 (Springer, 2010).

    Chapter 

    Google Scholar 

  • Couto, R. P., Rodriguesa, A. S. & Neto, A. I. Shallow-water hydrothermal vents in the Azores (Portugal). J. Integr. Coast. Zone Manage. 15, 495–505. https://doi.org/10.5894/rgci584 (2015).

    Article 

    Google Scholar 

  • Bellec, L. et al. Microbial communities of the shallow-water hydrothermal vent near Naples, Italy, and chemosynthetic symbionts associated with a free-living marine nematode. Front. Microbiol. 11, 2023. https://doi.org/10.3389/fmicb.2020.02023 (2020).

    Article 

    Google Scholar 

  • Chan, B. K. K. et al. Community structure of macrobiota and environmental parameters in shallow water hydrothermal vents off Kueishan Island, Taiwan. PLoS One 11, e0148675. https://doi.org/10.1371/journal.pone.0148675 (2016).

    CAS 
    Article 

    Google Scholar 

  • Donnarumma, L. et al. Environmental and benthic community patterns of the shallow hydrothermal area of Secca Delle Fumose (Baia, Naples, Italy). Front. Mar. Sci. 6, 685. https://doi.org/10.3389/fmars.2019.00685 (2019).

    Article 

    Google Scholar 

  • Southward, A. J. et al. On the biology of submarine caves with sulphur springs: Appraisal of 13C/12C ratios as a guide to trophic relations. J. Mar. Biol. Ass. UK 76, 265–285. https://doi.org/10.1017/S002531540003054X (1996).

    CAS 
    Article 

    Google Scholar 

  • Southward, A. J. et al. Behaviour and feeding of the Nassariid gastropod Cyclope neritea, abundant at hydrothermal brine seeps off Milos (Aegean Sea). J. Mar. Biol. Ass. UK 77, 753–771. https://doi.org/10.1017/S0025315400036171 (1997).

    Article 

    Google Scholar 

  • Chang, N. N. et al. Trophic structure and energy flow in a shallow-water hydrothermal vent: Insights from a stable isotope approach. PLoS One 13, e0204753. https://doi.org/10.1371/journal.pone.0204753 (2018).

    CAS 
    Article 

    Google Scholar 

  • Trager, G. C. & DeNiro, M. J. Chemoautotrophic sulphur bacteria as a food source for mollusks at intertidal hydrothermal vents: Evidence from stable isotopes. Veliger 33, 359–362 (1990).

    Google Scholar 

  • Kharlamenko, V. I., Zhukova, N. V., Khotimchenko, S. V., Svetashev, V. I. & Kamenev, G. M. Fatty acids as markers of food sources in a shallow-water hydrothermal ecosystem (Kraternaya Bight, Yankich Island, Kurile Islands). Mar. Ecol. Progr. Ser. 120, 231–241. https://doi.org/10.3354/meps120231 (1995).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • Chen, C. T. A. et al. Investigation into extremely acidic hydrothermal fluids off Kueishantao Islet, Taiwan. Acta. Oceanol. Sin. 24, 125–133 (2005).

    CAS 

    Google Scholar 

  • Wang, T. W., Chan, T. Y. & Chan, B. K. K. Trophic relationships of hydrothermal vent and non-vent communities in the upper sublittoral and upper bathyal zones off Kueishan Island, Taiwan: A combined morphological, gut content analysis and stable isotope approach. Mar. Biol. 161, 2447–2463. https://doi.org/10.1007/s00227-014-2479-6 (2014).

    Article 

    Google Scholar 

  • Chen, C., Chan, T. Y. & Chan, B. K. K. Molluscan diversity in shallow water hydrothermal vents off Kueishan Island, Taiwan. Mar. Biodivers. 48, 709–714. https://doi.org/10.1007/s12526-017-0804-2 (2017).

    Article 

    Google Scholar 

  • Lebrato, M. et al. Earthquake and typhoon trigger unprecedented transient shifts in shallow hydrothermal vents biogeochemistry. Sci. Rep. 9, 16926. https://doi.org/10.1038/s41598-019-53314-y (2019).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • Lin, Y.-S. et al. Intense but variable autotrophic activity in a rapidly flushed shallow-water hydrothermal plume (Kueishantao Islet, Taiwan). Geobiology 19, 87–101. https://doi.org/10.1111/gbi.12418 (2021).

    CAS 
    Article 

    Google Scholar 

  • Jeng, M. S., Ng, N. K. & Ng, P. K. L. Hydrothermal vent crabs feast on sea ‘snow’. Nature 432, 969. https://doi.org/10.1038/432969a (2004).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • Ho, T. W., Hwang, J. S., Cheung, M. K., Kwan, H. S. & Wong, C. K. Dietary analysis on the shallow-water hydrothermal vent crab Xenograpsus testudinatus using Illumina sequencing. Mar. Biol. 162, 1787–1798. https://doi.org/10.1007/s00227-015-2711-z (2015).

    CAS 
    Article 

    Google Scholar 

  • Yang, S. H. et al. Bacterial community associated with organs of shallow hydrothermal vent crab Xenograpsus testudinatus near Kueishan Island, Taiwan. PLoS One 11, e0150597. https://doi.org/10.1371/journal.pone.0150597 (2016).

    CAS 
    Article 

    Google Scholar 

  • Wu, J.-Y. et al. Isotopic niche differentiation in benthic consumers from shallow-water hydrothermal vents and nearby non-vent rocky reefs in northeastern Taiwan. Prog. Oceanogr. 195, 102596. https://doi.org/10.1016/j.pocean.2021.102596 (2021).

    Article 

    Google Scholar 

  • Collin, R. Calyptraeidae from the northeast Pacific (Gastropoda: Caenogastropoda). Zoosymposia 13, 28. https://doi.org/10.11646/zoosymposia.13.1.12 (2019).

    Article 

    Google Scholar 

  • Phillips, B. T. Beyond the vent: New perspectives on hydrothermal plumes and pelagic biology. Deep-Sea Res. II: Top. Stud. Oceanogr. 137, 480–485. https://doi.org/10.1016/j.dsr2.2016.10.005 (2017).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • Portail, M. et al. Food-web complexity across hydrothermal vents on the Azores triple junction. Deep-Sea Res. I: Oceanogr. Res. Pap. 131, 101–120. https://doi.org/10.1016/j.dsr.2017.11.010 (2018).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • Nomaki, H. et al. Nutritional sources of meio- and macrofauna at hydrothermal vents and adjacent areas: Natural-abundance radiocarbon and stable isotope analyses. Mar. Ecol. Prog. Ser. 622, 49–65. https://doi.org/10.1016/j.dsr.2017.11.010 (2019).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • Alfaro-Lucas, J. M. et al. High environmental stress and productivity increase functional diversity along a deep-sea hydrothermal vent gradient. Ecology 101, e03144. https://doi.org/10.1002/ecy.3144 (2020).

    CAS 
    Article 

    Google Scholar 

  • Stock, B. C. et al. Analyzing mixing systems using a new generation of Bayesian tracer mixing models. PeerJ 6, e5096. https://doi.org/10.7717/peerj.5096 (2018).

    Article 

    Google Scholar 

  • Michener, R. H. & Kaufman, L. Stable isotope ratios as tracers in marine food webs: An update. In Stable Isotopes in Ecology and Environmental Science (eds Michener, R. & Lajtha, K.) 238–283 (Blackwell Pub, 2007). https://doi.org/10.1002/9780470691854.ch9.

    Chapter 

    Google Scholar 

  • Montoya, J. P. Natural abundance of 15N in marine planktonic ecosystems. In Stable Isotopes in Ecology and Environmental Science (eds Michener, R. & Lajtha, K.) 176–201 (Blackwell Pub, 2007). https://doi.org/10.1002/9780470691854.ch7.

    Chapter 

    Google Scholar 

  • Dietl, G. P. First report of cannibalism in Triplofusus giganteus (Gastropoda: Fasciolariidae). Bull. Mar. Sci. 73, 757–761 (2003).

    ADS 

    Google Scholar 

  • Cumplido, M., Pappalardo, P., Fernandez, M., Averbuj, A. & Bigatti, G. Embryonic development, feeding and intracapsular oxygen availability in Trophon geversianus (Gastropoda: Muricudae). J. Molluscan. Stud. 77, 429–436. https://doi.org/10.1093/mollus/eyr025 (2011).

    Article 

    Google Scholar 

  • Modica, M. V. & Holford, M. The neogastropoda: Evolutionary innovations of predatory marine snails with remarkable pharmacological potential. In Evolutionary Biology—Concepts, Molecular and Morphological Evolution (ed. Pontarotti, P.) 249–270 (Springer, 2010).

    Chapter 

    Google Scholar 

  • Sebens, K. P. Recruitment and habitat selection in the intertidal sea anemones, Anthopleura elegantissima (Brandt) and A. xanthogrammica (Brandt). J. Exp. Mar. Biol. Ecol. 59, 103–124. https://doi.org/10.1016/0022-0981(82)90110-1 (1982).

    Article 

    Google Scholar 

  • Naumann, M. S., Orejas, C., Wild, C. & Ferrier-Pages, C. First evidence for zooplankton feeding sustaining key physiological processes in a scleractinian cold-water coral. J. Exp. Mar. Biol. Ecol. 214, 3570–3576. https://doi.org/10.1242/jeb.061390 (2011).

    CAS 
    Article 

    Google Scholar 

  • Dodds, L. A., Roberts, J. M., Taylor, A. C. & Marubini, F. Metabolic tolerance of the cold-water coral Lophelia pertusa (Scleractinia) to temperature and dissolved oxygen change. J. Exp. Mar. Biol. Ecol. 349, 205–214. https://doi.org/10.1016/j.jembe.2007.05.013 (2007).

    CAS 
    Article 

    Google Scholar 

  • Quesada, A. J., Acuña, F. H. & Cortés, J. Diet of the sea anemone Anthopleura nigrescens: Composition and variation between daytime and nighttime high tides. Zool. Stud. 53, 26. https://doi.org/10.1186/s40555-014-0026-2 (2014).

    Article 

    Google Scholar 

  • Ferrier-Pagès, C., Witting, J., Tambutté, E. & Sebens, K. P. Effect of natural zooplankton feeding on the tissue and skeletal growth of the scleractinian coral Stylophora pistillata. Coral Reefs 22, 229–240. https://doi.org/10.1007/s00338-003-0312-7 (2003).

    Article 

    Google Scholar 

  • Teece, M. A., Estes, B., Gelsleichter, E. & Lirman, D. Heterotrophic and autotrophic assimilation of fatty acids by two scleractinian corals, Montastraea faveolata and Porites astreoides. Limnol. Oceanogr. 56, 1285–1296. https://doi.org/10.4319/lo.2011.56.4.1285 (2011).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • Pawlik, J. R. & Deignan, L. K. Cowries graze verongid sponges on Caribbean reefs. Coral Reefs 34, 663. https://doi.org/10.1007/s00338-015-1279-x (2015).

    ADS 
    Article 

    Google Scholar 

  • Chan, B. K. K., Shao, K. T., Shao, Y. T. & Chang, Y. W. A simplified, economical, and robust light trap for capturing benthic and pelagic zooplankton. J. Exp. Mar. Biol. Ecol. 482, 25–32. https://doi.org/10.1016/j.jembe.2016.04.003 (2016).

    Article 

    Google Scholar 

  • Viozzi, M. F., Martinex del Rio, C. & Williner, V. Tissue-specific isotopic incorporation turnover rates and trophic discrimination factors in the freshwater shrimp Macrobrachium borellii (Crustacea: Decapoda: Palaemonidae). Zool. Stud. 60, 28. https://doi.org/10.6620/ZS.2021.60-28 (2021).

    CAS 
    Article 

    Google Scholar 

  • Tixier, P. et al. Importance of toothfish in the diet of generalist subantarctic killer whales: Implications for fisheries interactions. Mar. Ecol. Prog. Ser. 613, 197–210. https://doi.org/10.3354/meps12894 (2019).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • Nolan, E. T., Roberts, C. G. & Britton, R. J. Predicting the contributions of novel marine prey resources from angling and anadromy to the diet of a freshwater apex predator. Freshw. Biol. 64, 1542–1554. https://doi.org/10.1111/fwb.13326 (2019).

    Article 

    Google Scholar 

  • Stock, B. C. & Semmens, B. X. MixSIAR GUI user manual. Version 3.1. 716. https://doi.org/10.5281/zenodo.561 (2016).

  • R Core Team. R: A language and environment for statistical computing. Vienna, Austria: R Foundation for Statistical Computing. https://www.R-project.org (2019).

  • McCutchan, J. H. Jr., Lewis, W. M. Jr., Kendall, C. & McGrath, C. C. Variation in trophic shift for stable isotope ratios of carbon, nitrogen and sulfur. Oikos 102, 378–390. https://doi.org/10.1034/j.1600-0706.2003.12098.x (2003).

    CAS 
    Article 

    Google Scholar 

  • Gelman, A. Analysis of variance—why it is more important than ever. Ann. Stat. 33, 1–53. https://doi.org/10.1214/009053604000001048 (2005).

    MathSciNet 
    Article 
    MATH 

    Google Scholar 

  • Gelman, A., Carlin, J. B., Stern, H. S. & Rubin, D. B. Bayesian Data Analysis (CRC Press, 2014).

    MATH 

    Google Scholar 

  • Jackson, A. L., Parnell, A. C., Inger, R. & Bearhop, S. Comparing isotopic niche widths among and within communities: SIBER—Stable Isotope Bayesian Ellipses in R. J. Anim. Ecol. 80, 595–602. https://doi.org/10.1111/j.1365-2656.2011.01806.x (2011).

    Article 

    Google Scholar 


  • Source: Ecology - nature.com

    Structures considered key to gene expression are surprisingly fleeting

    Looking forward to forecast the risks of a changing climate