Wehner, R., Michel, B. & Antonsen, P. Visual navigation in insects: Coupling of egocentric and geocentric information. J. Exp. Biol. 199(1), 129–140 (1996).
Google Scholar
Collett, M., Chittka, L. & Collett, T. S. Spatial memory in insect navigation. Curr. Biol. 23(17), R789–R800 (2013).
Google Scholar
Cheng, K., Schultheiss, P., Schwarz, S., Wystrach, A. & Wehner, R. Beginnings of a synthetic approach to desert ant navigation. Behav. Proc. 102, 51–61 (2014).
Freas, C. A. & Schultheiss, P. How to navigate in different environments and situations: Lessons from ants. Front. Psych. 9, 841 (2018).
Wehner, R. Desert ant navigation: how miniature brains solve complex tasks. J. Comp. Physiol. A 189(8), 579–588 (2003).
Google Scholar
Wehner, R. The desert ant’s navigational toolkit: Procedural rather than positional knowledge. Navigation 55(2), 101–114 (2008).
Wehner, R. Desert Navigator (The Belknap Press of Harvard University Press, 2020).
Kohler, M. & Wehner, R. Idiosyncratic route-based memories in desert ants, Melophorus bagoti: How do they interact with path-integration vectors?. Neurobiol. Learn. Mem. 83(1), 1–12 (2005).
Google Scholar
Müller, M. & Wehner, R. Path integration provides a scaffold for landmark learning in desert ants. Curr. Biol. 20(15), 1368–1371 (2010).
Google Scholar
Mangan, M. & Webb, B. Spontaneous formation of multiple routes in individual desert ants (Cataglyphis velox). Behav. Ecol. 23(5), 944–954 (2012).
Schwarz, S., Wystrach, A. & Cheng, K. Ants’ navigation in an unfamiliar environment is influenced by their experience of a familiar route. Sci. Rep. 7(1), 1–10 (2017).
Graham, P. & Cheng, K. Ants use the panoramic skyline as a visual cue during navigation. Curr. Biol. 19, R935–R937 (2009).
Google Scholar
Wystrach, A., Beugnon, G. & Cheng, K. Landmarks or panoramas: What do navigating ants attend to for guidance?. Front. Zool. 8(1), 21 (2011).
Google Scholar
Wehner, R., Meier, C. & Zollikofer, C. The ontogeny of foraging behaviour in desertants, Cataglyphis bicolor. Ecol. Entom. 29, 240–250 (2004).
Zeil, J. & Fleischmann, P. N. The learning walks of ants (Hymenoptera: Formicidae). Myrmecol. News. 29, 93–110 (2019).
Schultheiss, P. et al. Crucial role of ultraviolet light for desert ants in determining direction from the terrestrial panorama. Anim. Behav. 115, 19–28 (2016).
Freas, C. A., Wystrach, A., Narendra, A. & Cheng, K. The view from the trees: Nocturnal bull ants, Myrmecia midas, use the surrounding panorama while descending from trees. Front. Psych. 9, 1–10 (2018).
Freas, C. A. & Cheng, K. Landmark learning, cue conflict, and outbound view sequence in navigating desert ants. J. Exp. Psych. Anim. Learn. Cogn. 44(4), 409–421 (2018).
Freas, C. A. & Spetch, M. L. Terrestrial cue learning and retention during the outbound and inbound foraging trip in the desert ant, Cataglyphis bicolor. J. Comp. Physiol. A. 205(2), 177–189 (2019).
Narendra, A., Si, A., Sulikowski, D. & Cheng, K. Learning, retention and coding of nest-associated visual cues by the Australian desert ant, Myrmecia midas. Behav. Ecol. Sociobiol. 61(10), 1543–1553 (2007).
Zeil, J. Visual homing: an insect perspective. Curr. Opin. Neurobiol. 22(2), 285–293 (2012).
Google Scholar
Zeil, J., Hofmann, M. I. & Chahl, J. S. Catchment areas of panoramic snapshots in outdoor scenes. J. Optic. Soc. Am. A. 20(3), 450 (2003).
Google Scholar
Wystrach, A., Cheng, K., Sosa, S. & Beugnon, G. Geometry, features, and panoramic views: Ants in rectangular arenas. J. Exp. Psychol. 37(4), 420–435 (2011).
Baddeley, B., Graham, P., Husbands, P. & Philippides, A. A model of ant route navigation driven by scene familiarity. PLoS Comp. Biol. 8(1), e1002336 (2012).
Google Scholar
Kodzhabashev, A. & Mangan, M. Route Following Without Scanning In Biomimetic and Biohybrid Systems 199–210 (Springer, 2015).
Möller, R. A model of ant navigation based on visual prediction. J. Theo. Biol. 305, 118–130 (2012).
Google Scholar
Le Möel, F. & Wystrach, A. Opponent processes in visual memories: A model of attraction and repulsion in navigating insects’ mushroom bodies. PLoS Comp. Biol. 16, e1007631 (2020).
Murray, T. et al. The role of attractive and repellent scene memories in ant homing (Myrmecia croslandi). J. Exp. Biol. 223, 21002 (2020).
Jayatilaka, P., Murray, T., Narendra, A. & Zeil, J. The choreography of learning walks in the Australian jack jumper ant Myrmecia croslandi. J. Exp. Biol. 221(20), 185306 (2018).
Schwarz, S., Mangan, M., Webb, B. & Wystrach, A. Route-following ants respond to alterations of the view sequence. J. Exp. Biol. 223, 218701 (2020).
Wystrach, A., Buehlmann, C., Schwarz, S., Cheng, K. & Graham, P. Rapid aversive and memory trace learning during route navigation in desert ants. Curr. Biol. 30(100), 1927–1933 (2020).
Google Scholar
Wystrach, A., Philippides, A., Aurejac, A., Cheng, K. & Graham, P. Visual scanning behaviours and their role in the navigation of the Australian desert ant Melophorus bagoti. J. Comp. Physiol. A 200(7), 615–626 (2014).
Wystrach, A., Schwarz, S., Graham, P. & Cheng, K. Running paths to nowhere: Repetition of routes shows how navigating ants modulate online the weights accorded to cues. Anim. Cogn. 2, 213–222 (2019).
MacArthur, R. H. & Pianka, E. R. On optimal use of a patchy environment. Am. Nat. 100(916), 603–609 (1966).
Krebs, J. R. Foraging Theory (Princeton University Press, 1986).
Kacelnik, A. & Bateson, M. Risky theories: The effects of variance on foraging decisions. Am. Zool. 36(4), 402–434 (1996).
Kacelnik, A. & Abreu, F. B. Risky choice and Weber’s law. J. Theor. Biol. 194(2), 289–298 (1998).
Google Scholar
Fechner, G. T. Elemente der Psychophysik Vol. 2 (Breitkopf u Härtel, 1860).
Bruce, A. C. & Johnson, J. E. V. Decision-making under risk: Effect of complexity on performance. Psychol. Rep. 79(1), 67–76 (1996).
Stevens, S. S. & Marks, L. E. Psychophysics: Introduction to its Perceptual, Neural, and Social Prospects (Routledge, 2017).
Kacelnik, A. & El Mouden, C. Triumphs and trials of the risk paradigm. Anim. Behav. 86(6), 1117–1129 (2013).
Hübner, C. & Czaczkes, T. J. Risk preference during collective decision making: Ant colonies make risk-indifferent collective choices. Anim. Behav. 132, 21–28 (2017).
De Agrò, M., Grimwade, D., Bach, R. & Czaczkes, T. J. Irrational risk aversion in an ant. Anim. Cogn. 1, 1–9 (2021).
Waddington, K. D., Allen, T. & Heinrich, B. Floral preferences of bumblebees (Bombus edwardsii) in relation to intermittent versus continuous rewards. Anim. Behav. 29(3), 779–784 (1981).
Cartar, R. V. A test of risk-sensitive foraging in wild bumble bees. Ecology 72(3), 888–895 (1991).
Perez, S. M. & Waddington, K. D. Carpenter bee (Xylocopa micans) risk indifference and a review of nectarivore risk-sensitivity studies. Am. Zool. 36(4), 435–446 (1996).
Fülöp, A. & Menzel, R. Risk-indifferent foraging behaviour in honeybees. Anim. Behav. 60(5), 657–666 (2000).
Google Scholar
Burns, D. D., Sendova-Franks, A. B. & Franks, N. R. The effect of social information on the collective choices of ant colonies. Behav. Ecol. 27(4), 1033–1040 (2016).
Sasaki, T., Pratt, S. C. & Kacelnik, A. Parallel vs. comparative evaluation of alternative options by colonies and individuals of the ant Temnothorax rugatulus. Sci. Rep. 8(1), 1–8 (2018).
Sasaki, T., Stott, B. & Pratt, S. C. Rational time investment during collective decision making in Temnothorax ants. Biol. Lett. 15(10), 20190542 (2019).
Google Scholar
Freas, C. A., Fleischmann, P. N. & Cheng, K. Experimental ethology of learning in desert ants: Becoming expert navigators. Behav. Proc. 158, 181–191 (2019).
Le Moël, F. & Wystrach, A. Towards a multi-level understanding in insect navigation. Curr. Opin. Inst. Sci. 42, 110–117 (2020).
Heinze, S. Visual navigation: Ants lose track without mushroom bodies. Curr. Biol. 30(17), R984–R986 (2020).
Google Scholar
Ardin, P., Peng, F., Mangan, M., Lagogiannis, K. & Webb, B. Using an insect mushroom body circuit to encode route memory in complex natural environments. PLOS Comp. Biol. 12(2), e1004683 (2016).
Google Scholar
Buehlmann, C. et al. Mushroom bodies are required for learned visual navigation, but not for innate visual behavior, in ants. Curr. Biol. 30(17), 3438–3443 (2020).
Google Scholar
Kamhi, J. F., Barron, A. B. & Narendra, A. Vertical lobes of the mushroom bodies are essential for view-based navigation in Australian Myrmecia ants. Curr. Biol. 30(17), 3432–3437 (2020).
Google Scholar
Heisenberg, M. Mushroom body memoir: From maps to models. Nat. Rev. Neurosci. 4(4), 266–275 (2003).
Google Scholar
Webb, B. & Wystrach, A. Neural mechanisms of insect navigation. Curr. Opin. Inst. Sci. 15, 27–39 (2016).
Habenstein, J., Amini, E., Grübel, K., El Jundi, B. & Rössler, W. The brain of Cataglyphis ants: Neuronal organization and visual projections. J. Comp. Neurol. 528(18), 3479–3506 (2020).
Google Scholar
Cohn, R., Morantte, I. & Ruta, V. Coordinated and compartmentalized neuromodulation shapes sensory processing in Drosophila. Cell 163(7), 1742–1755 (2015).
Google Scholar
Aso, Y. & Rubin, G. M. Dopaminergic neurons write and update memories with cell-type-specific rules. Elife 5, e16135 (2015).
Beck, C. D. O., Schroeder, B. & Davis, R. L. Learning performance of normal and mutant Drosophila after repeated conditioning trials with discrete stimuli. J. Neurosci. 20(8), 2944–2953 (2000).
Google Scholar
Boto, T. & Ramaswami, M. Learning and memory: Clashing engrams in the fly brain. Curr. Biol. 31(16), R1009–R1011 (2021).
Google Scholar
Bennett, J. E. M., Philippides, A. & Nowotny, T. Learning with reinforcement prediction errors in a model of the Drosophila mushroom body. Nat. Commun. 12, 22595 (2021).
Rescorla, R. A. & Wagner, A. R. A theory of Pavlovian conditioning: Variations in the effectiveness of reinforcement and nonreinforcement. In Classical Conditioning Ii: Current Theory and Research (eds Black, A. & Prokasy, W.) (Appleton-Century-Crofts, 1972).
Source: Ecology - nature.com