in

Aversive view memories and risk perception in navigating ants

  • Wehner, R., Michel, B. & Antonsen, P. Visual navigation in insects: Coupling of egocentric and geocentric information. J. Exp. Biol. 199(1), 129–140 (1996).

    CAS 
    PubMed 

    Google Scholar 

  • Collett, M., Chittka, L. & Collett, T. S. Spatial memory in insect navigation. Curr. Biol. 23(17), R789–R800 (2013).

    CAS 
    PubMed 

    Google Scholar 

  • Cheng, K., Schultheiss, P., Schwarz, S., Wystrach, A. & Wehner, R. Beginnings of a synthetic approach to desert ant navigation. Behav. Proc. 102, 51–61 (2014).

    Google Scholar 

  • Freas, C. A. & Schultheiss, P. How to navigate in different environments and situations: Lessons from ants. Front. Psych. 9, 841 (2018).

    Google Scholar 

  • Wehner, R. Desert ant navigation: how miniature brains solve complex tasks. J. Comp. Physiol. A 189(8), 579–588 (2003).

    ADS 
    CAS 

    Google Scholar 

  • Wehner, R. The desert ant’s navigational toolkit: Procedural rather than positional knowledge. Navigation 55(2), 101–114 (2008).

    Google Scholar 

  • Wehner, R. Desert Navigator (The Belknap Press of Harvard University Press, 2020).

    Google Scholar 

  • Kohler, M. & Wehner, R. Idiosyncratic route-based memories in desert ants, Melophorus bagoti: How do they interact with path-integration vectors?. Neurobiol. Learn. Mem. 83(1), 1–12 (2005).

    PubMed 

    Google Scholar 

  • Müller, M. & Wehner, R. Path integration provides a scaffold for landmark learning in desert ants. Curr. Biol. 20(15), 1368–1371 (2010).

    PubMed 

    Google Scholar 

  • Mangan, M. & Webb, B. Spontaneous formation of multiple routes in individual desert ants (Cataglyphis velox). Behav. Ecol. 23(5), 944–954 (2012).

    Google Scholar 

  • Schwarz, S., Wystrach, A. & Cheng, K. Ants’ navigation in an unfamiliar environment is influenced by their experience of a familiar route. Sci. Rep. 7(1), 1–10 (2017).

    Google Scholar 

  • Graham, P. & Cheng, K. Ants use the panoramic skyline as a visual cue during navigation. Curr. Biol. 19, R935–R937 (2009).

    CAS 
    PubMed 

    Google Scholar 

  • Wystrach, A., Beugnon, G. & Cheng, K. Landmarks or panoramas: What do navigating ants attend to for guidance?. Front. Zool. 8(1), 21 (2011).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Wehner, R., Meier, C. & Zollikofer, C. The ontogeny of foraging behaviour in desertants, Cataglyphis bicolor. Ecol. Entom. 29, 240–250 (2004).

    Google Scholar 

  • Zeil, J. & Fleischmann, P. N. The learning walks of ants (Hymenoptera: Formicidae). Myrmecol. News. 29, 93–110 (2019).

    Google Scholar 

  • Schultheiss, P. et al. Crucial role of ultraviolet light for desert ants in determining direction from the terrestrial panorama. Anim. Behav. 115, 19–28 (2016).

    Google Scholar 

  • Freas, C. A., Wystrach, A., Narendra, A. & Cheng, K. The view from the trees: Nocturnal bull ants, Myrmecia midas, use the surrounding panorama while descending from trees. Front. Psych. 9, 1–10 (2018).

    Google Scholar 

  • Freas, C. A. & Cheng, K. Landmark learning, cue conflict, and outbound view sequence in navigating desert ants. J. Exp. Psych. Anim. Learn. Cogn. 44(4), 409–421 (2018).

    Google Scholar 

  • Freas, C. A. & Spetch, M. L. Terrestrial cue learning and retention during the outbound and inbound foraging trip in the desert ant, Cataglyphis bicolor. J. Comp. Physiol. A. 205(2), 177–189 (2019).

    Google Scholar 

  • Narendra, A., Si, A., Sulikowski, D. & Cheng, K. Learning, retention and coding of nest-associated visual cues by the Australian desert ant, Myrmecia midas. Behav. Ecol. Sociobiol. 61(10), 1543–1553 (2007).

    Google Scholar 

  • Zeil, J. Visual homing: an insect perspective. Curr. Opin. Neurobiol. 22(2), 285–293 (2012).

    CAS 
    PubMed 

    Google Scholar 

  • Zeil, J., Hofmann, M. I. & Chahl, J. S. Catchment areas of panoramic snapshots in outdoor scenes. J. Optic. Soc. Am. A. 20(3), 450 (2003).

    ADS 

    Google Scholar 

  • Wystrach, A., Cheng, K., Sosa, S. & Beugnon, G. Geometry, features, and panoramic views: Ants in rectangular arenas. J. Exp. Psychol. 37(4), 420–435 (2011).

    Google Scholar 

  • Baddeley, B., Graham, P., Husbands, P. & Philippides, A. A model of ant route navigation driven by scene familiarity. PLoS Comp. Biol. 8(1), e1002336 (2012).

    ADS 
    CAS 

    Google Scholar 

  • Kodzhabashev, A. & Mangan, M. Route Following Without Scanning In Biomimetic and Biohybrid Systems 199–210 (Springer, 2015).

    Google Scholar 

  • Möller, R. A model of ant navigation based on visual prediction. J. Theo. Biol. 305, 118–130 (2012).

    ADS 
    MathSciNet 
    MATH 

    Google Scholar 

  • Le Möel, F. & Wystrach, A. Opponent processes in visual memories: A model of attraction and repulsion in navigating insects’ mushroom bodies. PLoS Comp. Biol. 16, e1007631 (2020).

    Google Scholar 

  • Murray, T. et al. The role of attractive and repellent scene memories in ant homing (Myrmecia croslandi). J. Exp. Biol. 223, 21002 (2020).

    Google Scholar 

  • Jayatilaka, P., Murray, T., Narendra, A. & Zeil, J. The choreography of learning walks in the Australian jack jumper ant Myrmecia croslandi. J. Exp. Biol. 221(20), 185306 (2018).

    Google Scholar 

  • Schwarz, S., Mangan, M., Webb, B. & Wystrach, A. Route-following ants respond to alterations of the view sequence. J. Exp. Biol. 223, 218701 (2020).

    Google Scholar 

  • Wystrach, A., Buehlmann, C., Schwarz, S., Cheng, K. & Graham, P. Rapid aversive and memory trace learning during route navigation in desert ants. Curr. Biol. 30(100), 1927–1933 (2020).

    CAS 
    PubMed 

    Google Scholar 

  • Wystrach, A., Philippides, A., Aurejac, A., Cheng, K. & Graham, P. Visual scanning behaviours and their role in the navigation of the Australian desert ant Melophorus bagoti. J. Comp. Physiol. A 200(7), 615–626 (2014).

    Google Scholar 

  • Wystrach, A., Schwarz, S., Graham, P. & Cheng, K. Running paths to nowhere: Repetition of routes shows how navigating ants modulate online the weights accorded to cues. Anim. Cogn. 2, 213–222 (2019).

    Google Scholar 

  • MacArthur, R. H. & Pianka, E. R. On optimal use of a patchy environment. Am. Nat. 100(916), 603–609 (1966).

    Google Scholar 

  • Krebs, J. R. Foraging Theory (Princeton University Press, 1986).

    Google Scholar 

  • Kacelnik, A. & Bateson, M. Risky theories: The effects of variance on foraging decisions. Am. Zool. 36(4), 402–434 (1996).

    Google Scholar 

  • Kacelnik, A. & Abreu, F. B. Risky choice and Weber’s law. J. Theor. Biol. 194(2), 289–298 (1998).

    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Fechner, G. T. Elemente der Psychophysik Vol. 2 (Breitkopf u Härtel, 1860).

    Google Scholar 

  • Bruce, A. C. & Johnson, J. E. V. Decision-making under risk: Effect of complexity on performance. Psychol. Rep. 79(1), 67–76 (1996).

    Google Scholar 

  • Stevens, S. S. & Marks, L. E. Psychophysics: Introduction to its Perceptual, Neural, and Social Prospects (Routledge, 2017).

    Google Scholar 

  • Kacelnik, A. & El Mouden, C. Triumphs and trials of the risk paradigm. Anim. Behav. 86(6), 1117–1129 (2013).

    Google Scholar 

  • Hübner, C. & Czaczkes, T. J. Risk preference during collective decision making: Ant colonies make risk-indifferent collective choices. Anim. Behav. 132, 21–28 (2017).

    Google Scholar 

  • De Agrò, M., Grimwade, D., Bach, R. & Czaczkes, T. J. Irrational risk aversion in an ant. Anim. Cogn. 1, 1–9 (2021).

    Google Scholar 

  • Waddington, K. D., Allen, T. & Heinrich, B. Floral preferences of bumblebees (Bombus edwardsii) in relation to intermittent versus continuous rewards. Anim. Behav. 29(3), 779–784 (1981).

    Google Scholar 

  • Cartar, R. V. A test of risk-sensitive foraging in wild bumble bees. Ecology 72(3), 888–895 (1991).

    Google Scholar 

  • Perez, S. M. & Waddington, K. D. Carpenter bee (Xylocopa micans) risk indifference and a review of nectarivore risk-sensitivity studies. Am. Zool. 36(4), 435–446 (1996).

    Google Scholar 

  • Fülöp, A. & Menzel, R. Risk-indifferent foraging behaviour in honeybees. Anim. Behav. 60(5), 657–666 (2000).

    PubMed 

    Google Scholar 

  • Burns, D. D., Sendova-Franks, A. B. & Franks, N. R. The effect of social information on the collective choices of ant colonies. Behav. Ecol. 27(4), 1033–1040 (2016).

    Google Scholar 

  • Sasaki, T., Pratt, S. C. & Kacelnik, A. Parallel vs. comparative evaluation of alternative options by colonies and individuals of the ant Temnothorax rugatulus. Sci. Rep. 8(1), 1–8 (2018).

    Google Scholar 

  • Sasaki, T., Stott, B. & Pratt, S. C. Rational time investment during collective decision making in Temnothorax ants. Biol. Lett. 15(10), 20190542 (2019).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Freas, C. A., Fleischmann, P. N. & Cheng, K. Experimental ethology of learning in desert ants: Becoming expert navigators. Behav. Proc. 158, 181–191 (2019).

    Google Scholar 

  • Le Moël, F. & Wystrach, A. Towards a multi-level understanding in insect navigation. Curr. Opin. Inst. Sci. 42, 110–117 (2020).

    Google Scholar 

  • Heinze, S. Visual navigation: Ants lose track without mushroom bodies. Curr. Biol. 30(17), R984–R986 (2020).

    CAS 
    PubMed 

    Google Scholar 

  • Ardin, P., Peng, F., Mangan, M., Lagogiannis, K. & Webb, B. Using an insect mushroom body circuit to encode route memory in complex natural environments. PLOS Comp. Biol. 12(2), e1004683 (2016).

    ADS 

    Google Scholar 

  • Buehlmann, C. et al. Mushroom bodies are required for learned visual navigation, but not for innate visual behavior, in ants. Curr. Biol. 30(17), 3438–3443 (2020).

    CAS 
    PubMed 

    Google Scholar 

  • Kamhi, J. F., Barron, A. B. & Narendra, A. Vertical lobes of the mushroom bodies are essential for view-based navigation in Australian Myrmecia ants. Curr. Biol. 30(17), 3432–3437 (2020).

    CAS 
    PubMed 

    Google Scholar 

  • Heisenberg, M. Mushroom body memoir: From maps to models. Nat. Rev. Neurosci. 4(4), 266–275 (2003).

    CAS 
    PubMed 

    Google Scholar 

  • Webb, B. & Wystrach, A. Neural mechanisms of insect navigation. Curr. Opin. Inst. Sci. 15, 27–39 (2016).

    Google Scholar 

  • Habenstein, J., Amini, E., Grübel, K., El Jundi, B. & Rössler, W. The brain of Cataglyphis ants: Neuronal organization and visual projections. J. Comp. Neurol. 528(18), 3479–3506 (2020).

    PubMed 

    Google Scholar 

  • Cohn, R., Morantte, I. & Ruta, V. Coordinated and compartmentalized neuromodulation shapes sensory processing in Drosophila. Cell 163(7), 1742–1755 (2015).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Aso, Y. & Rubin, G. M. Dopaminergic neurons write and update memories with cell-type-specific rules. Elife 5, e16135 (2015).

    Google Scholar 

  • Beck, C. D. O., Schroeder, B. & Davis, R. L. Learning performance of normal and mutant Drosophila after repeated conditioning trials with discrete stimuli. J. Neurosci. 20(8), 2944–2953 (2000).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Boto, T. & Ramaswami, M. Learning and memory: Clashing engrams in the fly brain. Curr. Biol. 31(16), R1009–R1011 (2021).

    CAS 
    PubMed 

    Google Scholar 

  • Bennett, J. E. M., Philippides, A. & Nowotny, T. Learning with reinforcement prediction errors in a model of the Drosophila mushroom body. Nat. Commun. 12, 22595 (2021).

    Google Scholar 

  • Rescorla, R. A. & Wagner, A. R. A theory of Pavlovian conditioning: Variations in the effectiveness of reinforcement and nonreinforcement. In Classical Conditioning Ii: Current Theory and Research (eds Black, A. & Prokasy, W.) (Appleton-Century-Crofts, 1972).

    Google Scholar 


  • Source: Ecology - nature.com

    Thermophiles and carbohydrate-active enzymes (CAZymes) in biofilm microbial consortia that decompose lignocellulosic plant litters at high temperatures

    Microbotanical residues for the study of early hominin tools