in

Avian predators taste reject mimetic prey in relation to their signal reliability

  • Dall, S. R. X. & Johnstone, R. A. Managing uncertainty: Information and insurance under the risk of starvation. Philos. Trans. R. Soc. Lond. B 357, 1519–1526 (2002).

    Article 

    Google Scholar 

  • Balogh, A. C. V., Gamberale-Stille, G. & Leimar, O. Learning and the mimicry spectrum: from quasi-Bates to super-Müller. Anim. Behav. 76, 1591–1599 (2008).

    Article 

    Google Scholar 

  • Barnett, C. A., Bateson, M. & Rowe, C. Better the devil you know: Avian predators find variation in prey toxicity aversive. Biol. Lett. 10, 20140533 (2014).

    Article 

    Google Scholar 

  • Ruxton, G. D., Allen, W. L., Sherratt, T. N. & Speed, M. P. Avoiding Attack: The Evolutionary Ecology of Crypsis, Aposematism, and Mimicry 2nd edn. (Oxford University Press, 2018).

    Book 

    Google Scholar 

  • Sherratt, T. N. State-dependent risk-taking by predators in systems with defended prey. Oikos 103, 93–100 (2003).

    Article 

    Google Scholar 

  • Sherratt, T. N., Speed, M. S. & Ruxton, G. D. Natural selection on unpalatable species imposed by state-dependent foraging behaviour. J. Theor. Biol. 228, 217–226 (2004).

    MathSciNet 
    Article 
    ADS 

    Google Scholar 

  • Gamberale-Stille, G. & Guilford, T. Automimicry destabilizes aposematism: Predator sample-and-reject behaviour may provide a solution. Proc. R. Soc. Lond. B 271, 2621–2625 (2004).

    Article 

    Google Scholar 

  • Skelhorn, J. & Rowe, C. Avian predators taste-reject aposematic prey on the basis of their chemical defence. Biol. Lett. 2, 348–350 (2006).

    Article 

    Google Scholar 

  • Skelhorn, J. & Rowe, C. Automimic frequency influences the foraging decisions of avian predators on aposematic prey. Anim. Behav. 74, 1563–1572 (2007).

    Article 

    Google Scholar 

  • Brower, J. V. Z. Experimental studies of mimicry. IV. The reactions of starlings to different proportions of models and mimics. Am. Nat. 94, 271–282 (1960).

    Article 

    Google Scholar 

  • Huheey, J. E. Studies in warning coloration and mimicry VIII. Further evidence for a frequency-dependent model of predation. J. Herpetol. 14, 223–230 (1980).

  • Avery, M. L. Application of mimicry theory to bird damage control. J. Wildl. Manag. 49, 1116–1121 (1985).

    Article 

    Google Scholar 

  • Nonacs, P. Foraging in a dynamic mimicry complex. Am. Nat. 126, 165–180 (1985).

    Article 

    Google Scholar 

  • Rowland, H. M., Ihalainen, E., Lindström, L., Mappes, J. & Speed, M. P. Co-mimics have a mutualistic relationship despite unequal defences. Nature 448, 64–67 (2007).

    CAS 
    Article 
    ADS 

    Google Scholar 

  • Skelhorn, J. & Rowe, C. Predators’ toxin burdens influence their strategic decisions to eat toxic prey. Curr. Biol. 17, 1479–1483 (2007).

    CAS 
    Article 

    Google Scholar 

  • Jones, R. S., Davis, S. C. & Speed, M. P. Defence cheats can degrade protection of chemically defended prey. Ethology 119, 52–57 (2013).

    Article 

    Google Scholar 

  • Guilford, T. “Go-slow” signalling and the problem of automimicry. J. Theor. Biol. 170, 311–316 (1994).

    Article 
    ADS 

    Google Scholar 

  • Skelhorn, J. & Rowe, C. Taste-rejection by predators and the evolution of unpalatability in prey. Behav. Ecol. Sociobiol. 60, 550–555 (2006).

    Article 

    Google Scholar 

  • Chatelain, M., Halpin, C. G. & Rowe, C. Ambient temperature influences birds’ decisions to eat toxic prey. Anim. Behav. 86, 733–740 (2013).

    CAS 
    Article 

    Google Scholar 

  • Peel, M. C., Finlayson, B. L. & McMahon, T. A. Updated world map of the Köppen-Geiger climate classification. Hydrol. Earth Syst. Sci. 11, 1633–1644 (2007).

    Article 
    ADS 

    Google Scholar 

  • Yamazaki, Y., Pagani-Núñez, E., Sota, T. & Barnett C. R. A. The truth is in the detail: predators attack aposematic prey less intensely than other prey types. Biol. J. Linn. Soc. 131, 332–343 (2020).

  • Valkonnen, J. K. et al. Variation in predator species abundance can cause variable selection pressure on warning signalling prey. Ecol. Evol. 2, 1971–1976 (2011).

    Article 

    Google Scholar 

  • Nokelainen, O., Valkonen, J., Lindstedt, C. & Mappes, J. Changes in predator community structure shifts the efficacy of two warning signals in Arctiid moths. J. Anim. Ecol. 83, 598–605 (2014).

    Article 

    Google Scholar 

  • Bibby, C. J., Burgess, N. D., Hill, D. A. &. Mustoe S. H. Bird Census Techniques (2nd Edition). (Academic Press, London, 2000).

  • Tsujimoto, D., Lin, C.-H., Kurihara, N. & Barnett, C. R. A. Citizen science in the class-room: the consistency of student collected data and its value in ecological hypothesis testing. Ornithological Sci. 18, 39–47 (2019).

    Article 

    Google Scholar 

  • Bates, D., Maechler, M., Bolker, B. & Walker, S. Fitting linear mixed-effects models using lme4. J. Stat. Software 67, 1–48 (2015).

    Article 

    Google Scholar 

  • Rainey, C. Dealing with separation in logistic regression models. Polit. Anal. 24, 339–355 (2016).

    Article 

    Google Scholar 

  • Nakagawa, S. & Schielzeth, H. A general and simple method for obtaining R2 from generalized linear mixed-effects models. Meth. Ecol. Evol. 4, 133–142 (2012).

    Article 

    Google Scholar 

  • Hothorn, T,. Bretz, F. & Westfall, P. Simultaneous Inference in General Parametric Models. Biometrical. J. 50, 346–363 (2008).

  • Paradis, E. & Schliep, K. Ape 5.0: An environment for modern phylogenetics and evolutionary analyses in R. Bioinformatics 35, 526–528 (2019).

  • Barnett, C. R. A., Ringhofer, M. & Suzuki, T. N. Differences in predatory behavior among three bird species when attacking chemically defended and undefended prey. J. Ethol. 39, 29–37 (2021).

    Article 

    Google Scholar 

  • Carroll, J. & Sherratt, T. N. A direct comparison of the effectiveness of two anti-predator strategies under field conditions. J. Zool. 291, 279–285 (2013).

    Article 

    Google Scholar 

  • Krebs, C. J. Ecological Methodology (2nd Edition). (Benjamin/Cummings, Menlo Park, CA, 1999).

  • Oksanen, J. vegan: Community Ecology Package. (2020).

  • R Development Core Team. R: a language and environment for statistical computing. Vienna: R Foundation for Statistical Computing. URL http://www.Rproject.org (2017).

  • Marples, N. M., Speed, M. P. & Thomas, R. J. An individual-based profitability spectrum for understanding interactions between predators and their prey. Biol. J. Linn. Soc. 125, 1–13 (2018).

    Article 

    Google Scholar 

  • Boyden, T. C. Butterfly palatability and mimicry: experiments with anolis lizards. Evolution 30, 73–81 (1976).

    Article 

    Google Scholar 

  • Järvi, T., Sillén-Tullberg, B. & Wiklund, C. The cost of being aposematic. An experimental study of predation on larvae of Papilio machaon by the Great Tit Parus major. Oikos 36, 267–272 (1981).

  • Wiklund, C. & Järvi, T. Survival of distasteful insects after being attacked by naïve birds: a reappraisal of aposematic coloration evolving through individual selection. Evolution 36, 998–1002 (1982).

    Article 

    Google Scholar 

  • Pinheiro, C. E. G. & Campos, V. C. Do rufous-tailed jacamars (Galbula ruficauda) play with aposematic butterflies. Ornitol. Neotrop. 24, 1–3 (2013).

    Google Scholar 

  • Halpin, C. G. & Rowe, C. The effect of distastefulness and conspicuous coloration on post-attack rejection behaviour of predators and survival of prey. Biol. J. Linn. Soc. 120, 236–244 (2017).

    Google Scholar 

  • Sillén-Tullberg, B. Higher survival of an aposematic than of a cryptic form of a distasteful bug. Oecologia 67, 411–415 (1985).

    Article 
    ADS 

    Google Scholar 

  • Fisher, R. A. The Genetical Theory of Natural Selection (Clarenden Press, 1930).

    Book 

    Google Scholar 

  • Chai, P. Field observations and feeding experiments on the responses of rufous-tailed jacamars butterflies in a tropical rainforest. Biol. J. Linn. Soc. 29, 161–189 (1986).

    Article 

    Google Scholar 

  • Wang, L.-Y., Huang, W.-S., Tang, H.-C., Huang, L.-C. & Lin, C.-P. Too hard to swallow: A secret secondary defence of an aposematic insect. J. Exp. Biol. 221, jeb172486 (2018).

    PubMed 

    Google Scholar 

  • Summers, K., Speed, M. P., Blount, J. D. & Stuckert, A. M. M. Are aposematic signals honest? A review. J. Evol. Biol. 28, 1583–1599 (2015).

    CAS 
    Article 

    Google Scholar 

  • Holen, Ø. H. Disentangling taste and toxicity in aposematic prey. Proc. R. Soc. B 280, 20122588 (2013).

    Article 

    Google Scholar 

  • Speed, M. P. & Franks, D. W. Antagonistic evolution in an aposematic predator-prey system. Evolution 68, 2996–3007 (2014).

    Article 

    Google Scholar 


  • Source: Ecology - nature.com

    Morphological volatility precedes ecological innovation in early echinoderms

    Reconciling human health with the environment while struggling against the COVID-19 pandemic through improved face mask eco-design