Costanza, R. et al. Changes in the global value of ecosystem services. Glob. Environ. Change 26, 152–158 (2014).
Google Scholar
Mittermeier, R. A. et al. Wilderness and biodiversity conservation. Proc. Natl. Acad. Sci. USA 100, 10309–10313 (2003).
Google Scholar
Dirzo, R. & Raven, P. H. Global state of biodiversity and loss. Annu. Rev. Env. Resour. 28, 137–167 (2003).
Google Scholar
Marengo, J. A. et al. Changes in climate and land use over the amazon region: current and future variability and trends. Front. Earth Sci. 6, 1–21 (2018).
Google Scholar
Anderson-Teixeira, K. J. et al. Climate-regulation services of natural and agricultural ecoregions of the Americas. Nat. Clim. Change 2, 177–181 (2012).
Google Scholar
Marengo, J. A. et al. The drought of Amazonia in 2005. J. Clim. 21, 495–516 (2008).
Google Scholar
Lewis, S. L., Brando, P. M., Phillips, O. L., Van Der Heijden, G. M. F. & Nepstad, D. The 2010 Amazon drought. Science 331, 554 (2011).
Google Scholar
Jiménez-Muñoz, J. C. et al. Record-breaking warming and extreme drought in the Amazon rainforest during the course of El Niño 2015–2016. Sci. Rep. 6, 33130 (2016).
Google Scholar
Phillips, O. L. et al. Drought sensitivity of the amazon rainforest. Science 323, 1344–1347 (2009).
Koren, G. et al. Widespread reduction in sun-induced fluorescence from the Amazon during the 2015/2016 El Niño. Philos. Trans. R. Soc. Lond. B Biol. Sci 373, 20170408 (2018).
Google Scholar
Feldpausch, T. R. et al. Amazon forest response to repeated droughts. Glob. Biogeochem. Cycles 30, 964–982 (2016).
Google Scholar
Sousa, T. R. et al. Palms and trees resist extreme drought in Amazon forests with shallow water tables. J. Ecol. 108, 2070–2082 (2020).
Google Scholar
Barros, F. et al. Hydraulic traits explain differential responses of Amazonian forests to the 2015 El Niño-induced drought. New Phytol. 223, 1253–1266 (2019).
Google Scholar
Magney, T. S. et al. Mechanistic evidence for tracking the seasonality of photosynthesis with solar-induced fluorescence. Proc. Natl Acad. Sci. USA https://doi.org/10.1073/pnas.1900278116 (2019).
Ciemer, C. et al. Higher resilience to climatic disturbances in tropical vegetation exposed to more variable rainfall. Nat. Geosci. 12, 174–179 (2019).
Google Scholar
Gloor, E. et al. Tropical land carbon cycle responses to 2015/16 El Niño as recorded by atmospheric greenhouse gas and remote sensing data. Philos. Trans. R. Soc. B 373, 20170302 (2018).
Google Scholar
Jiménez-Muñoz, J. C., Sobrino, J. A., Mattar, C. & Malhi, Y. Spatial and temporal patterns of the recent warming of the Amazon forest. J. Geophys. Res. Atmos. 118, 5204–5215 (2013).
Google Scholar
Choat, B. et al. Global convergence in the vulnerability of forests to drought. Nature 491, 752–755 (2012).
Google Scholar
Esquivel-Muelbert, A. et al. Seasonal drought limits tree species across the Neotropics. Ecography 60, 12 (2016).
Fisher, R. A., Williams, M., de Lourdes Ruivo, M., de Costa, A. L. & Meir, P. Evaluating climatic and soil water controls on evapotranspiration at two Amazonian rainforest sites. Agric. For. Meteorol. 148, 850–861 (2008).
Google Scholar
Marthews, T. R. et al. High-resolution hydraulic parameter maps for surface soils in tropical South America. Geosci. Model Dev. 7, 711–723 (2014).
Google Scholar
Esteban, E. J. L., Castilho, C. V., Melgaço, K. L. & Costa, F. R. C. The other side of droughts: wet extremes and topography as buffers of negative drought effects in an Amazonian forest. New. Phytol. 229, 1995–2006 (2021).
Google Scholar
Castro, A. O. et al. OCO-2 solar-induced chlorophyll fluorescence variability across ecoregions of the amazon basin and the extreme drought effects of El Niño (2015–2016). Remote Sens. 12, 1202 (2020).
Google Scholar
Sullivan, M. J. P. et al. Long-term thermal sensitivity of Earth’s tropical forests. Science 368, 869–874 (2020).
Google Scholar
Sombroek, W. Spatial and temporal patterns of amazon rainfall. Ambio 30, 388–396 (2001).
Google Scholar
Quesada, C. A. et al. Basin-wide variations in Amazon forest structure and function are mediated by both soils and climate. Biogeosciences 9, 2203–2246 (2012).
Fan, Y., Li, H. & Miguez-Macho, G. Global patterns of groundwater table depth. Science 339, 940–943 (2013).
Google Scholar
Joetzjer, E., Douville, H., Delire, C. & Ciais, P. Present-day and future Amazonian precipitation in global climate models: CMIP5 versus CMIP3. Clim. Dyn. 41, 2921–2936 (2013).
Google Scholar
Schietti, J. et al. Vertical distance from drainage drives floristic composition changes in an Amazonian rainforest. Plant. Ecol. Divers. 7, 241–253 (2014).
Oliveira, R. S. et al. Embolism resistance drives the distribution of Amazonian rainforest tree species along hydro‐topographic gradients. New Phytol. 221, 1457–1465 (2018).
Fyllas, N. M. et al. Basin-wide variations in foliar properties of Amazonian forest: phylogeny, soils and climate. Biogeosciences 6, 2677–2708 (2009).
Sterck, F., Markesteijn, L., Schieving, F. & Poorter, L. Functional traits determine trade-offs and niches in a tropical forest community. PNAS 108, 20627–20632 (2011).
Google Scholar
Oliveira, R. S. et al. Linking plant hydraulics and the fast–slow continuum to understand resilience to drought in tropical ecosystems. New Phytol. 230, 904–923 (2021).
Google Scholar
Guillemot, J. et al. Small and slow is safe: On the drought tolerance of tropical tree species. Glob. Chang. Biol. 28, 2622–2638 (2022).
Google Scholar
DeSoto, L. et al. Low growth resilience to drought is related to future mortality risk in trees. Nat. Commun. 11, 545 (2020).
Google Scholar
Rowland, L. et al. Death from drought in tropical forests is triggered by hydraulics not carbon starvation. Nature 528, 119–122 (2015).
Google Scholar
de Almeida Castanho, A. D. et al. Changing Amazon biomass and the role of atmospheric CO2 concentration, climate, and land use. Glob. Biogeochem. Cycles 30, 18–39 (2016).
Google Scholar
Friedlingstein, P. et al. Global carbon budget 2020. Earth Syst. Sci. Data 12, 3269–3340 (2020).
Google Scholar
Sitch, S. et al. Evaluation of ecosystem dynamics, plant geography and terrestrial carbon cycling in the LPJ dynamic global vegetation model. Glob. Chang. Biol. 9, 161–185 (2003).
Google Scholar
Lathière, J. et al. Impact of climate variability and land use changes on global biogenic volatile organic compound emissions. Atmos. Chem. Phys. 6, 2129–2146 (2006).
Google Scholar
Galbraith, D. et al. Multiple mechanisms of Amazonian forest biomass losses in three dynamic global vegetation models under climate change. New Phytol. 187, 647–65 (2010).
Google Scholar
Johnson, M. O. et al. Variation in stem mortality rates determines patterns of above-ground biomass in Amazonian forests: implications for dynamic global vegetation models. Glob. Chang. Biol. 22, 3996–4013 (2016).
Google Scholar
Thonicke, K. et al. Simulating functional diversity of European natural forests along climatic gradients. J. Biogeogr. 47, 1069–1085 (2020).
Google Scholar
Feldpausch, T. R. et al. Height-diameter allometry of tropical forest trees. Biogeosciences 8, 1081–1106 (2011).
Google Scholar
Feldpausch, T. R. et al. Tree height integrated into pantropical forest biomass estimates. Biogeosciences 9, 3381–3403 (2012).
Google Scholar
Potapov, P. et al. The last frontiers of wilderness: tracking loss of intact forest landscapes from 2000 to 2013. Sci. Adv. 3, 1–14 (2017).
Google Scholar
Olson, D. M. et al. Terrestrial ecoregions of the world: a new map of life on Earth. BioScience 51, 933–938 (2001).
Google Scholar
Running, Steve, Mu, Qiaozhen & Zhao, Maosheng. MOD16A2 MODIS/Terra net evapotranspiration 8-day L4 global 500m. https://doi.org/10.5067/MODIS/MOD16A2.006 (2017).
van Schaik, E. et al. Improved SIFTER v2 algorithm for long-term GOME-2A satellite retrievals of fluorescence with a correction for instrument degradation. https://doi.org/10.5194/amt-2019-384 (2020).
Kooreman, M. L. et al. GOME-2A SIFTER v2 (2007-2018) [Data set]. SIFTER sun-induced vegetation fluorescence data from GOME-2A (Version 2.0) [Data set]. Royal Netherlands Meteorological Institute (KNMI). https://doi.org/10.21944/gome2a-sifter-v2-sun-induced-fluorescence.
Hoese, D. et al. pytroll/pyresample: Version 1.23.0. Zenodo, https://doi.org/10.5281/zenodo.6375741 (2022).
Kooreman, M., Tuinder, O., Boersma, K. F. & van Schaik, E. Algorithm Theoretical Basis Document for the GOME-2 NRT, Offline and Data Record Sun-Induced Fluorescence Products. (2019).
Wigneron, J.-P. et al. Tropical forests did not recover from the strong 2015–2016 El Niño event. Sci. Adv. 6, eaay4603 (2020).
Google Scholar
Gatti, L. V. et al. Drought sensitivity of Amazonian carbon balance revealed by atmospheric measurements. Nature 506, 76–80 (2014).
Google Scholar
Doughty, R. et al. TROPOMI reveals dry-season increase of solar-induced chlorophyll fluorescence in the Amazon forest. Proc. Natl. Acad. Sci. USA 116, 22393–22398 (2019).
Google Scholar
Porcar-Castell, A. et al. Chlorophyll a fluorescence illuminates a path connecting plant molecular biology to Earth-system science. Nat. Plants 7, 998–1009 (2021).
Google Scholar
Sun, Y. et al. OCO-2 advances photosynthesis observation from space via solar-induced chlorophyll fluorescence. Science 358, eaam5747 (2017).
Google Scholar
Wood, J. D. et al. Multiscale analyses of solar-induced florescence and gross primary production. Geophys. Res. Lett. 44, 533–541 (2017).
Google Scholar
Verma, M. et al. Effect of environmental conditions on the relationship between solar-induced fluorescence and gross primary productivity at an OzFlux grassland site. J. Geophys. Res. Biogeosci. 122, 716–733 (2017).
Google Scholar
Parazoo, N. C. et al. Terrestrial gross primary production inferred from satellite fluorescence and vegetation models. Glob. Chang Biol. 20, 3103–3121 (2014).
Google Scholar
Copernicus Climate Change Service (C3S). ERA5: Fifth generation of ECMWF atmospheric reanalyses of the global climate. https://cds.climate.copernicus.eu/cdsapp#!/home (2017).
Goddard Earth Sciences Data and Information Services Center (GES DISC). Tropical Rainfall Measuring Mission (TRMM) – TRMM (TMPA/3B43) Rainfall Estimate L3 1 month 0.25 degree x 0.25 degree V7. https://doi.org/10.5067/TRMM/TMPA/MONTH/7 (2011).
Aragão, L. E. O. C. et al. Spatial patterns and fire response of recent Amazonian droughts. Geophys. Res. Lett. 34 (2007).
Paca, V. H. et al. The spatial variability of actual evapotranspiration across the Amazon River Basin based on remote sensing products validated with flux towers. Ecol. Process. 8, 6 (2019).
Phillips, O. L. et al. Drought–mortality relationships for tropical forests. New Phytol. 187, 631–646 (2010).
Google Scholar
Maeda, E. E. et al. Evapotranspiration seasonality across the Amazon Basin. Earth Syst. Dyn. 8, 439–454 (2017).
Google Scholar
Hengl, T. et al. SoilGrids250m: Global gridded soil information based on machine learning. PLoS One 12, e0169748 (2017).
Google Scholar
Costa, F. R. C., Schietti, J., Stark, S. C. & Smith, M. N. The other side of tropical forest drought: do shallow water table regions of Amazonia act as large-scale hydrological refugia from drought? New Phytol. https://nph.onlinelibrary.wiley.com/doi/10.1111/nph.17914 .
Walsh, R. P. D. & Lawler, D. M. Rainfall seasonality: description, spatial patterns and change through time. Weather 36, 201–208 (1981).
Google Scholar
Gorelick, N. et al. Google Earth Engine: Planetary-scale geospatial analysis for everyone. Remote Sens. Environ. https://doi.org/10.1016/j.rse.2017.06.031 (2017).
Heinze, G., Wallisch, C. & Dunkler, D. Variable selection – a review and recommendations for the practicing statistician. Biom. J. 60, 431–449 (2018).
Google Scholar
Wickham, H. ggplot2: Elegant Graphics for Data Analysis (Springer-Verlag New York, 2016).
QGIS.org. QGIS Geographic Information System (QGIS Association, 2022).
Fancourt, M. Repository for Code, Data and Figures. https://zenodo.org/badge/latestdoi/514231211 (2022).
Source: Ecology - nature.com