in

Balsam fir (Abies balsamea) needles and their essential oil kill overwintering ticks (Ixodes scapularis) at cold temperatures

  • Kilpatrick, A. M. et al. Lyme disease ecology in a changing world: consensus, uncertainty and critical gaps for improving control. Philos. Trans. R. Soc. B-Biol. Sci. 372, 15. https://doi.org/10.1098/rstb.2016.0117 (2017).

    Article 

    Google Scholar 

  • Adenubi, O. T. et al. Pesticidal plants as a possible alternative to synthetic acaricides in tick control: A systematic review and meta-analysis. Ind. Crop. Prod. 123, 779–806. https://doi.org/10.1016/j.indcrop.2018.06.075 (2018).

    CAS 
    Article 

    Google Scholar 

  • Jordan, R. A. & Schulze, T. L. Availability and nature of commercial tick control services in three Lyme disease endemic states. J. Med. Entomol. 57, 807–814. https://doi.org/10.1093/jme/tjz215 (2019).

    CAS 
    Article 

    Google Scholar 

  • Isman, M. B. Botanical insecticides in the twenty-first century – Fulfilling their promise?. Ann. Rev. Entomol. 65, 233–249 (2020).

    CAS 
    Article 

    Google Scholar 

  • Eisen, L. Control of ixodid ticks and prevention of tick-borne diseases in the United States: The prospect of a new Lyme disease vaccine and the continuing problem with tick exposure on residential properties. Ticks Tick-Borne Dis. https://doi.org/10.1016/j.ttbdis.2021.101649 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Santos, A. C. C. et al. Apis mellifera (Insecta: Hymenoptera) in the target of neonicotinoids: A one-way ticket? Bioinsecticides can be an alternative. Ecotoxicol. Environ. Safe. 163, 28–36. https://doi.org/10.1016/j.ecoenv.2018.07.048 (2018).

    CAS 
    Article 

    Google Scholar 

  • Matos, W. B. et al. Potential source of ecofriendly insecticides: Essential oil induces avoidance and cause lower impairment on the activity of a stingless bee than organosynthetic insecticides, in laboratory. Ecotoxicol. Environ. Safe. 209, 111764. https://doi.org/10.1016/j.ecoenv.2020.111764 (2021).

    CAS 
    Article 

    Google Scholar 

  • Gashout, H. A., Guzman-Novoa, E., Goodwin, P. H. & Correa-Benítez, A. Impact of sublethal exposure to synthetic and natural acaricides on honey bee (Apis mellifera) memory and expression of genes related to memory. J. Insect Physiol. 121, 104014. https://doi.org/10.1016/j.jinsphys.2020.104014 (2020).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • Eisen, L. & Dolan, M. C. Evidence for personal protective measures to reduce human contact with Blacklegged ticks and for environmentally based control methods to suppress host-seeking Blacklegged ticks and reduce infection with Lyme disease spirochetes in tick vectors and rodent reservoirs. J. Med. Entomol. 53, 1063–1092. https://doi.org/10.1093/jme/tjw103 (2016).

    Article 
    PubMed 

    Google Scholar 

  • Dyer, M. C., Requintina, M. D., Berger, K. A., Puggioni, G. & Mather, T. N. Evaluating the effects of minimal risk natural products for control of the tick, Ixodes scapularis (Acari: Ixodidae). J. Med. Entomol. 58, 390–397. https://doi.org/10.1093/jme/tjaa188 (2021).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • Schulze, T. L. & Jordan, R. A. Synthetic pyrethroid, natural product, and entomopathogenic fungal acaricide product formulations for sustained early season suppression of host-seeking Ixodes scapularis (Acari: Ixodidae) and Amblyomma americanum nymphs. J. Med. Entomol. 58, 814–820. https://doi.org/10.1093/jme/tjaa248 (2021).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • Bharadwaj, A., Stafford, K. C. & Behle, R. W. Efficacy and environmental persistence of nootkatone for the control of the Blacklegged tick (Acari: Ixodidae) in residential landscapes. J. Med. Entomol. 49, 1035–1044. https://doi.org/10.1603/me11251 (2012).

    Article 
    PubMed 

    Google Scholar 

  • Pavela, R. & Sedlák, P. Post-application temperature as a factor influencing the insecticidal activity of the essential oil from Thymus vulgaris. Ind. Crop. Prod. 113, 46–49 (2018).

    CAS 
    Article 

    Google Scholar 

  • Brunner, J. L., Killilea, M. & Ostfeld, R. S. Overwintering survival of nymphal Ixodes scapularis (Acari: Ixodidae) under natural conditions. J. Med. Entomol. 49, 981–987. https://doi.org/10.1603/me12060 (2012).

    Article 
    PubMed 

    Google Scholar 

  • Chown, S. L. & Nicolson, S. W. Insect Physiol. Ecol. (Oxford University Press, 2004).

  • Ogden, N. H., Beard, C. B., Ginsberg, H. S. & Tsao, J. I. Possible effects of climate change on Ixodid ticks and the pathogens they transmit: Predictions and observations. J. Med. Entomol. 58, 1536–1545 (2021).

    Article 

    Google Scholar 

  • Ballard, K. & Bone, C. Exploring spatially varying relationships between Lyme disease and land cover with geographically weighted regression. Appl. Geo. 127, 102383 (2021).

    Article 

    Google Scholar 

  • Neelakanta, G., Sultana, H., Fish, D., Anderson, J. F. & Fikrig, E. Anaplasma phagocytophilum induces Ixodes scapularis ticks to express an antifreeze glycoprotein gene that enhances their survival in the cold. J. Clin. Invest. 120, 3179–3190. https://doi.org/10.1172/jci42868 (2010).

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Adamo, S. A. Animals have a Plan B: how insects deal with the dual challenge of predators and pathogens. J. Comp. Physiol. B-Biochem. Syst. Environ. Physiol. 190, 381–390. https://doi.org/10.1007/s00360-020-01282-5 (2020).

    Article 

    Google Scholar 

  • Adamo, S. A. How insects protect themselves against combined starvation and pathogen challenges, and the implications for reductionism. Comp. Biochem. Physiol. B-Biochem. Molec. Biol. https://doi.org/10.1016/j.cbpb.2021.110564 (2021).

    Article 

    Google Scholar 

  • Linske, M. A. et al. Impacts of deciduous leaf litter and snow presence on nymphal Ixodes scapularis (Acari: Ixodidae) overwintering survival in coastal New England, USA. Insects https://doi.org/10.3390/insects10080227 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Burtis, J. C., Fahey, T. J. & Yavitt, J. B. Survival and energy use of Ixodes scapularis nymphs throughout their overwintering period. Parasitol. 146, 781–790. https://doi.org/10.1017/s0031182018002147 (2019).

    Article 

    Google Scholar 

  • Boehnke, D., Gebhardt, R., Petney, T. & Norra, S. On the complexity of measuring forests microclimate and interpreting its relevance in habitat ecology: the example of Ixodes ricinus ticks. Parasit. Vectors 10, 549. https://doi.org/10.1186/s13071-017-2498-5 (2017).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Lindsay, L. R. et al. Survival and development of Ixodes scapularis (Acari, Ixodidae) under various climatic conditions in Ontario, Canada. J. Med. Entomol. 32, 143–152. https://doi.org/10.1093/jmedent/32.2.143 (1995).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • Lindsay, L. R. et al. Survival and development of the different life stages of Ixodes scapularis (Acari: Ixodidae) held within four habitats on Long Point, Ontario, Canada. J. Med. Entomol. 35, 189–199. https://doi.org/10.1093/jmedent/35.3.189 (1998).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • Ginsberg, H. S. et al. Woodland type and spatial distribution of nymphal Ixodes scapularis (Acari: Ixodidae). Environ. Entomol. 33, 1266–1273. https://doi.org/10.1603/0046-225x-33.5.1266 (2004).

    Article 

    Google Scholar 

  • Clow, K. M. et al. The influence of abiotic and biotic factors on the invasion of Ixodes scapularis in Ontario, Canada. Ticks Tick-Borne Dis. 8, 554–563. https://doi.org/10.1016/j.ttbdis.2017.03.003 (2017).

    Article 
    PubMed 

    Google Scholar 

  • Natural Resources Canada. Balsam fir, <https://tidcf.nrcan.gc.ca/en/trees/factsheet/80> (2015).

  • Khatchikian, C. E. et al. Recent and rapid population growth and range expansion of the Lyme disease tick vector, Ixodes scapularis North America. Evolution 69, 1678–1689. https://doi.org/10.1111/evo.12690 (2015).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Pichette, A., Larouche, P. L., Lebrun, M. & Legault, J. Composition and antibacterial activity of Abies balsamea essential oil. Phytotherapy Res. 20, 371–373 (2006).

    CAS 
    Article 

    Google Scholar 

  • Poaty, B., Lahlah, J., Porqueres, F. & Bouafif, H. Composition, antimicrobial and antioxidant activities of seven essential oils from the North American boreal forest. World J. Microbiol. Biotechnol. 31, 907–919. https://doi.org/10.1007/s11274-015-1845-y (2015).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • Beasley, T. M. & Schumacker, R. E. Multiple regression approach to analyzing contingency tables: Post hoc and planned comparison procedures. J. Exp. Ed. 64, 79–93. https://doi.org/10.1080/00220973.1995.9943797 (1995).

    Article 

    Google Scholar 

  • Canon, L., Deslauriers, A., Mshvildadze, V. & Pichette, A. Volatile compounds in the foliage of balsam fir analyzed by static headspace gas chromotography (HS-GS): An example of the spruce budworm defoliation effect in the boreal forest of Quebec, Canada. Microchem. J. 110, 587–590 (2013).

    Article 

    Google Scholar 

  • Faraone, N., MacPherson, S. & Hillier, N. K. Behavioral responses of Ixodes scapularis tick to natural products: development of novel repellents. Exp. Appl. Acarol. 79, 195–207. https://doi.org/10.1007/s10493-019-00421-0 (2019).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • McMillan, L. E., Miller, D. W. & Adamo, S. A. Eating when ill is risky: immune defense impairs food detoxification in the caterpillar Manduca sexta. J. Exp. Biol. 221, 173336 (2018).

    Google Scholar 

  • Gazave, E., Chevillon, C., Lenormand, T., Marquine, M. & Raymond, M. Dissecting the cost of insecticide resistance genes during the overwintering period of the mosquito Culex pipiens. Heredity 87, 441–448 (2001).

    CAS 
    Article 

    Google Scholar 

  • Lalouette, L., Williams, C. M., Hervant, F., Sinclair, B. J. & Renault, D. Metabolic rate and oxidative stress in insects exposed to low temperature thermal fluctuations. Comp. Biochem. Physiol. A 158, 229–234 (2011).

    CAS 
    Article 

    Google Scholar 

  • Clark, D. D. Lower temperature limits for activity of several Ixodid ticks: Effects of body size and rate of temperature change. J. Med. Entomol. 32, 449–452 (1995).

    CAS 
    Article 

    Google Scholar 

  • Carroll, J. F. & Kramer, M. Winter activity of Ixodes scapularis (Acari : Ixodidae) and the operation of deer-targeted tick control devices in Maryland. J. Med. Entomol. 40, 238–244. https://doi.org/10.1603/0022-2585-40.2.238 (2003).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • Ginsberg, H. S. et al. Environmental factors affecting survival of immature Ixodes scapularis and implications for geographical distribution of Lyme disease: the climate/behavior hypothesis. PLoS ONE 12, e0168723. https://doi.org/10.1371/journal.pone.0168723 (2017).

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Quadros, D. G., Johnson, T. L., Whitney, T. R., Oliver, J. D. & Chavez, A. S. O. Plant-derived natural compounds for tick pest control in livestock and wildlife: Pragmatism or utopia?. Insects https://doi.org/10.3390/insects11080490 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Ogendo, J. et al. Biocontrol potential of selected plant essential oil constituents as fumigants of insect pests attacking stored food commodities. Health 10, 287–318 (2011).

    Google Scholar 

  • Panella, N. A., Karchesy, J., Maupin, G. O., Malan, J. C. & Piesman, J. Susceptibility of immature Ixodes scapularis (Acari: Ixodidae) to plant-derived acaricides. J. Med. Entomol. 34, 340–345 (1997).

    CAS 
    Article 

    Google Scholar 

  • Rosado-Aguilar, J. A. et al. Plant products and secondary metabolites with acaricide activity against ticks. Vet. Parasitol. 238, 66–76. https://doi.org/10.1016/j.vetpar.2017.03.023 (2017).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • Jaenson, T. G. T., Carboui, S. & Palsson, K. Repellency of oils of lemon eucalyptus, geranium, and lavender and the mosquito repellent MyggA natural to Ixodes ricinus (Acari : Ixodidae) in the laboratory and field. J. Med. Entomol. 43, 731–736. https://doi.org/10.1603/0022-2585(2006)43[731:Rooole]2.0.Co;2 (2006).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • Eigbrett, C. Natural Sourcing Organic Essential Oils Oxford, Connecticut, USA, .praannaturals.com/downloads/msds/SDS_Organic_Essential_Oil_Fir_Balsam_Canada.pdf (2016).

  • Schulze, T. L. et al. Efficacy of granular deltamethrin against Ixodes scapularis and Amblyomma americanum (Acari: Ixodidae) nymphs. J. Med. Entomol. 38, 344–346. https://doi.org/10.1603/0022-2585-38.2.344 (2001).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • Elias, S. P. et al. Effect of a botanical acaricide on Ixodes scapularis (Acari: Ixodidae) and nontarget arthropods. J. Med. Entomol. 50, 126–136. https://doi.org/10.1603/me12124 (2013).

    Article 
    PubMed 

    Google Scholar 

  • Burtis, J. C., Yavitt, J. B., Fahey, T. J. & Ostfeld, R. S. Ticks as soil-dwelling arthropods: an intersection between disease and soil ecology. J. Med. Entomol. 56, 1555–1564. https://doi.org/10.1093/jme/tjz116 (2019).

    Article 
    PubMed 

    Google Scholar 

  • Burtis, J. C., Ostfeld, R. S., Yavitt, J. B. & Fahey, T. J. The relationship between soil arthropods and the overwinter survival of Ixodes scapularis (Acari: Ixodidae) under manipulated snow cover. J. Med. Entomol. 53, 225–229. https://doi.org/10.1093/jme/tjv151 (2016).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • Guerra, M. et al. Predicting the risk of Lyme disease: Habitat suitability for Ixodes scapularis in the north central United States. Emerg. Infect. Dis. 8, 289–297. https://doi.org/10.3201/eid0803.010166 (2002).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Bunnell, J. E., Price, S. D., Das, A., Shields, T. M. & Glass, G. E. Geographic information systems and spatial analysis of adult Ixodes scapularis (Acari: Ixodidae) in the Middle Atlantic region of the USA. J. Med. Entomol. 40, 570–576. https://doi.org/10.1603/0022-2585-40.4.570 (2003).

    Article 
    PubMed 

    Google Scholar 

  • Lubelczyk, C. B. et al. Habitat associations of Ixodes scapularis (Acari: Ixodidae) in Maine. Environ. Entomol. 33, 900–906. https://doi.org/10.1603/0046-225x-33.4.900 (2004).

    Article 

    Google Scholar 

  • Killilea, M. E., Swei, A., Lane, R. S., Briggs, C. J. & Ostfeld, R. S. Spatial dynamics of Lyme disease: A review. EcoHealth 5, 167–195. https://doi.org/10.1007/s10393-008-0171-3 (2008).

    Article 
    PubMed 

    Google Scholar 

  • Stafford, K. C. Survival of immature Ixodes scapularis (Acari: Ixodidae) at different relative humidities. J. Med. Entomol. 31, 310–314 (1994).

    Article 

    Google Scholar 

  • Bertrand, M. R. & Wilson, M. L. Microclimate-dependent survival of unfed adult Ixodes scapularis (Acari: Ixodidae) in Nature: Life cycle and study design implications. J. Med. Entomol. 33, 619–627 (1996).

    CAS 
    Article 

    Google Scholar 

  • Lindsay, L. R. et al. Microclimate and habitat in relation to Ixodes scapularis (Acari: Ixodidae) populations on Long Point, Ontario, Canada. J. Med. Entomol. 36, 255–262. https://doi.org/10.1093/jmedent/36.3.255 (1999).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • Thompson, C., Spielman, A. & Krause, P. J. Coinfecting deer-associated zoonoses: Lyme disease, babesiosis, and ehrlichiosis. Clin. Infect. Dis. 33, 676–685 (2001).

    CAS 
    Article 

    Google Scholar 

  • Hinckley, A. F. et al. effectiveness of residential acaricides to prevent Lyme and other tick-borne diseases in humans. J. Infect. Dis. 214, 182–188. https://doi.org/10.1093/infdis/jiv775 (2016).

    Article 
    PubMed 

    Google Scholar 

  • Keesing, F. et al. Effects of Ttck-control interventions on tick abundance, human encounters with Ttcks, and incidence of tickborne diseases in residential neighborhoods, New York, USA. Emerg. Infect. Dis. 28, 957–966. https://doi.org/10.3201/eid2805.211146 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Hayes, L. E., Scott, J. A. & Stafford, K. C. Influences of weather on Ixodes scapularis nymphal densities at long-term study sites in Connecticut. Ticks Tick-Borne Dis. 6, 258–266. https://doi.org/10.1016/j.ttbdiS.2015.01.006 (2015).

    Article 
    PubMed 

    Google Scholar 

  • Rand, P. W. et al. Trial of a minimal-risk botanical compound to control the vector tick of Lyme disease. J. Med. Entomol. 47, 695–698 (2010).

    CAS 
    Article 

    Google Scholar 

  • United Nations. Convention on Biological Diversity. <https://www.cbd.int/doc/legal/cbd-en.pdf> (1992).

  • Convention on International Trade in Endangered Species of Wild Fauna and Flora. <https://cites.org/eng/disc/text.php> (1973).

  • Burtis, J. C. Method for the efficient deployment and recovery of Ixodes scapularis (Acari: Ixodidae) nymphs and engorged larvae from field microcosms. J. Med. Entomol. 54, 1778–1782. https://doi.org/10.1093/jme/tjx157 (2017).

    Article 
    PubMed 

    Google Scholar 

  • Nova Scotia Department of Natural Resources and Renewables Trees of the Acadian Forest <https://novascotia.ca/natr/forestry/treeid/> (2021).


  • Source: Ecology - nature.com

    New hardware offers faster computation for artificial intelligence, with much less energy

    The gut microbiome variability of a butterflyfish increases on severely degraded Caribbean reefs