in

Basin-scale biogeochemical and ecological impacts of islands in the tropical Pacific Ocean

  • Field, C. B., Behrenfeld, M. J., Randerson, J. T. & Falkowski, P. Primary production of the biosphere: integrating terrestrial and oceanic components. Science 281, 237–240 (1998).

    Article 

    Google Scholar 

  • Guidi, L. et al. Plankton networks driving carbon export in the oligotrophic ocean. Nature 532, 465–470 (2016).

    Article 

    Google Scholar 

  • Ptacnik, R. et al. Diversity predicts stability and resource use efficiency in natural phytoplankton communities. Proc. Natl.Acad. Sci. USA 105, 5134–5138 (2008).

    Article 

    Google Scholar 

  • Corcoran, A. A. & Boeing, W. J. Biodiversity increases the productivity and stability of phytoplankton communities. PLoS ONE 7, e49397 (2012).

    Article 

    Google Scholar 

  • Arteaga, L., Pahlow, M. & Oschlies, A. Global patterns of phytoplankton nutrient and light colimitation inferred from an optimality-based model. Glob. Biogeochem. Cycles 28, 648–661 (2014).

    Article 

    Google Scholar 

  • Lewis, M., Hebert, D., Harrison, W. G., Platt, T. & Oakey, N. S. Vertical nitrate fluxes in the oligotrophic ocean. Science 234, 870–873 (1986).

    Article 

    Google Scholar 

  • McGillicuddy, D. J. J. et al. Eddy/wind interactions stimulate extraordinary mid-ocean plankton blooms. Science 316, 1021–1026 (2007).

    Article 

    Google Scholar 

  • Duce, R. A. et al. Impacts of atmospheric anthropogenic nitrogen on the open ocean. Science 320, 893–897 (2008).

    Article 

    Google Scholar 

  • Tang, W. et al. Revisiting the distribution of oceanic N2 fixation and estimating diazotrophic contribution to marine production. Nat. Commun. 10, 831 (2019).

    Article 

    Google Scholar 

  • Letscher, R. T., Primeau, F. & Moore, J. K. Nutrient budgets in the subtropical ocean gyres dominated by lateral transport. Nat. Geosci. 9, 815–819 (2016).

    Article 

    Google Scholar 

  • Righetti, D., Vogt, M., Gruber, N., Psomas, A. & Zimmermann, N. E. Global pattern of phytoplankton diversity driven by temperature and environmental variability. Sci. Adv. 5, eaau6253 (2019).

    Article 

    Google Scholar 

  • Ibarbalz, F. M. et al. Global trends in marine plankton diversity across kingdoms of life. Cell 179, 1084–1097 (2019).

    Article 

    Google Scholar 

  • Lévy, M., Franks, P. J. S. & Smith, K. S. The role of submesoscale currents in structuring marine ecosystems. Nat. Commun. 9, 4758 (2018).

    Article 

    Google Scholar 

  • Dutkiewicz, S. et al. Dimensions of marine phytoplankton diversity. Biogeosciences 17, 609–634 (2020).

    Article 

    Google Scholar 

  • Gove, J. M. et al. Near-island biological hotspots in barren ocean basins. Nat. Commun. 7, 10581 (2016).

    Article 

    Google Scholar 

  • Doty, M. S. & Oguri, M. The island mass effect. ICES J. Mar. Sci. 22, 33–37 (1956).

    Article 

    Google Scholar 

  • Bell, J. D. et al. Planning the use of fish for food security in the Pacific. Mar. Policy 33, 64–76 (2009).

    Article 

    Google Scholar 

  • Bakker, D. C., Nielsdóttir, M. C., Morris, P. J., Venables, H. J. & Watson, A. J. The island mass effect and biological carbon uptake for the subantarctic Crozet Archipelago. Deep Sea Res. Pt II 54, 2174–2190 (2007).

    Article 

    Google Scholar 

  • Heywood, K. J., Stevens, D. P. & Bigg, G. R. Eddy formation behind the tropical island of Aldabra. Deep Sea Res. Pt I 43, 555–578 (1996).

    Article 

    Google Scholar 

  • Palacios, D. M. Factors influencing the island-mass effect of the Galapagos archipelago. Geophys. Res. Lett. 29, 2134 (2002).

    Article 

    Google Scholar 

  • Gilmartin, M. & Revelante, N. The ‘island mass’ effect on the phytoplankton and primary production of the Hawaiian Islands. J. Exp. Mar. Biol. Ecol. 16, 181–204 (1974).

    Article 

    Google Scholar 

  • Signorini, S. C., McClain, C. R. & Dandonneau, Y. Mixing and phytoplankton bloom in the wake of the Marquesas Islands. Geophys. Res. Lett. 26, 3121–3124 (1999).

    Article 

    Google Scholar 

  • Messié, M., Radenac, M.-H., Lefèvre, J. & Marchesiello, P. Chlorophyll bloom in the western Pacific at the end of the 1997-98 El Niño: the role of the Kiribati Islands. Geophys. Res. Lett. 33, L14601 (2006).

    Article 

    Google Scholar 

  • Messié, M. & Radenac, M.-H. Seasonal variability of the surface chlorophyll in the western tropical Pacific from SeaWiFS data. Deep Sea Res. Pt I 53, 1581–1600 (2006).

    Article 

    Google Scholar 

  • Le Borgne, R., Dandonneau, Y. & Lemasson, L. The problem of the island mass effect on chlorophyll and zooplankton standing crops around Mare (Loyalty Islands) and New Caledonia. Bull. Mar. Sci. 37, 450–459 (1985).

    Google Scholar 

  • Messié, M. et al. The delayed island mass effect: how islands can remotely trigger blooms in the oligotrophic ocean. Geophys. Res. Lett. 47, e2019GL085282 (2020).

    Article 

    Google Scholar 

  • Dandonneau, Y. & Charpy, L. An empirical approach to the island mass effect in the south tropical Pacific based on sea surface chlorophyll concentrations. Deep Sea Res. Pt A 32, 707–721 (1985).

    Article 

    Google Scholar 

  • Shiozaki, T., Kodama, T. & Furuya, K. Large-scale impact of the island mass effect through nitrogen fixation in the western South Pacific Ocean. Geophys. Res. Lett. 41, 2907–2913 (2014).

    Article 

    Google Scholar 

  • Caputi, L. et al. Community-level responses to iron availability in open ocean plankton ecosystems. Glob. Biogeochem. Cycles 33, 391–419 (2019).

    Article 

    Google Scholar 

  • Martinez, E., Rodier, M., Pagano, M. & Sauzède, R. Plankton spatial variability within the Marquesas archipelago, South Pacific. J. Mar. Syst. 212, 103432 (2020).

    Article 

    Google Scholar 

  • Behrenfeld, M. J. & Falkowski, P. G. Photosynthetic rates derived from satellite-based chlorophyll concentration. Limnol. Oceanogr. 42, 1–20 (1997).

    Article 

    Google Scholar 

  • Laws, E. A., Ducklow, H. & McCarthy, J. J. Temperature effects on export production in the open ocean. Glob. Biogeochem. Cycles 14, 1231–1246 (2000).

    Article 

    Google Scholar 

  • Messié, M. & Chavez, F. P. A global analysis of ENSO synchrony: the oceans’ biological response to physical forcing. J. Geophys. Res. 117, C09001 (2012).

    Google Scholar 

  • Luo, Y.-W., Lima, I. D., Karl, D. M., Deutsch, C. A. & Doney, S. C. Data-based assessment of environmental controls on global marine nitrogen fixation. Biogeosciences 11, 691–708 (2014).

    Article 

    Google Scholar 

  • Messié, M. & Chavez, F. P. Seasonal regulation of primary production in eastern boundary upwelling systems. Prog. Oceanogr. 134, 1–18 (2015).

    Article 

    Google Scholar 

  • Mouw, C. B. et al. A consumer’s guide to satellite remote sensing of multiple phytoplankton groups in the global ocean. Front. Mar. Sci. 4, 41 (2017).

    Article 

    Google Scholar 

  • Alvain, S., Moulin, C., Dandonneau, Y. & Bréon, F. M. Remote sensing of phytoplankton groups in case 1 waters from global SeaWiFS imagery. Deep Sea Res. Pt I 52, 1989–2004 (2005).

    Article 

    Google Scholar 

  • Rêve-Lamarche, A.-H. et al. Ocean color radiance anomalies in the North Sea. Front. Mar. Sci. https://doi.org/10.3389/fmars.2017.00408 (2017).

  • Alvain, S., Loisel, H. & Dessailly, D. Theoretical analysis of ocean color radiances anomalies and implications for phytoplankton groups detection in case 1 waters. Opt. Express 20, 1070–1083 (2012).

    Article 

    Google Scholar 

  • Mackey, D. J., Blanchot, J., Higgins, H. W. & Neveux, J. Phytoplankton abundances and community structure in the equatorial Pacific. Deep Sea Res. Pt II 49, 2561–2582 (2002).

    Article 

    Google Scholar 

  • Johnson, Z. I. Niche partitioning among Prochlorococcus ecotypes along ocean-scale environmental gradients. Science 311, 1737–1740 (2006).

    Article 

    Google Scholar 

  • Martiny, A. C., Kathuria, S. & Berube, P. M. Widespread metabolic potential for nitrite and nitrate assimilation among Prochlorococcus ecotypes. Proc. Natl. Acad. Sci. USA 106, 10787–10792 (2009).

    Article 

    Google Scholar 

  • Vallina, S. M. et al. Global relationship between phytoplankton diversity and productivity in the ocean. Nat. Commun. 5, 4299 (2014).

    Article 

    Google Scholar 

  • Dai, S. et al. The seamount effect on phytoplankton in the tropical western Pacific. Mar. Environ. Res. 162, 105094 (2020).

    Article 

    Google Scholar 

  • Leitner, A. B., Neuheimer, A. B. & Drazen, J. C. Evidence for long-term seamount-induced chlorophyll enhancements. Sci. Rep. 10, 12729 (2020).

    Article 

    Google Scholar 

  • Bowen, B. W., Rocha, L. A., Toonen, R. J. & Karl, S. A. The origins of tropical marine biodiversity. Trends Ecol. Evol. 28, 359–366 (2013).

    Article 

    Google Scholar 

  • Worm, B., Lotze, H. K. & Myers, R. A. Predator diversity hotspots in the blue ocean. Proc. Natl. Acad. Sci. USA 100, 9884–9888 (2003).

    Article 

    Google Scholar 

  • Block, B. A. et al. Tracking apex marine predator movements in a dynamic ocean. Nature 475, 86–90 (2011).

    Article 

    Google Scholar 

  • Harrison, A.-L. et al. The political biogeography of migratory marine predators. Nat. Ecol. Evol. 2, 1571–1578 (2018).

    Article 

    Google Scholar 

  • Pompa, S., Ehrlich, P. R. & Ceballos, G. Global distribution and conservation of marine mammals. Proc. Natl. Acad. Sci. USA 108, 13600–13605 (2011).

    Article 

    Google Scholar 

  • Wessel, P. & Smith, W. H. F. A global, self-consistent, hierarchical, high-resolution shoreline database. J. Geophys. Res. 101, 8741––8743 (1996).

    Article 

    Google Scholar 

  • Nunn, P. D., Kumar, L., Eliot, I. & McLean, R. F. Classifying Pacific islands. Geosci. Lett 3, 7 (2016).

    Article 

    Google Scholar 

  • Hasegawa, D., Lewis, M. R. & Gangopadhyay, A. How islands cause phytoplankton to bloom in their wakes. Geophys. Res. Lett. 36, L20605 (2009).

    Article 

    Google Scholar 

  • Platt, T. & Sathyendranath, S. Oceanic primary production: estimation by remote sensing at local and regional scales. Science 241, 1613–1620 (1988).

    Article 

    Google Scholar 

  • Hasegawa, D., Yamazaki, H., Ishimaru, T., Nagashima, H. & Koike, Y. Apparent phytoplankton bloom due to island mass effect. J. Mar. Syst. 69, 238–246 (2008).

    Article 

    Google Scholar 

  • Silsbe, G. M., Behrenfeld, M. J., Halsey, K. H., Milligan, A. J. & Westberry, T. K. The CAFE model: a net production model for global ocean phytoplankton. Glob. Biogeochem. Cycles 30, 1756–1777 (2016).

    Article 

    Google Scholar 

  • Ben Mustapha, Z., Alvain, S., Jamet, C., Loisel, H. & Dessailly, D. Automatic classification of water-leaving radiance anomalies from global SeaWiFS imagery: application to the detection of phytoplankton groups in open ocean waters. Remote Sens. Environ. 146, 97–112 (2014).

    Article 

    Google Scholar 

  • Alvain, S., Moulin, C., Dandonneau, Y. & Loisel, H. Seasonal distribution and succession of dominant phytoplankton groups in the global ocean: a satellite view. Glob. Biogeochem. Cycles 22, GB3001 (2008).

    Article 

    Google Scholar 

  • Bray, J. R. & Curtis, J. T. An ordination of the upland forest communities of Southern Wisconsin. Ecol. Monogr. 27, 325–349 (1957).

    Article 

    Google Scholar 

  • Pielou, E. The measurement of diversity in different types of biological collections. J. Theor. Biol. 13, 131–144 (1966).

    Article 

    Google Scholar 

  • Shannon, C. E. A mathematical theory of communication. Bell Syst. Tech. J. 27, 379–423 (1948).

    Article 

    Google Scholar 

  • Colwell, R. K., Mao, C. X. & Chang, J. Interpolating, extrapolating, and comparing incidence-based species accumulation curves. Ecology 85, 2717–2727 (2004).

    Article 

    Google Scholar 

  • De Monte, S., Soccodato, A., Alvain, S. & d’Ovidio, F. Can we detect oceanic biodiversity hotspots from space? ISME J. 7, 2054–2056 (2013).

    Article 

    Google Scholar 

  • Soccodato, A. et al. Estimating planktonic diversity through spatial dominance patterns in a model ocean. Mar. Geonom. 29, 9–17 (2016).

    Article 

    Google Scholar 

  • Messié, M., Petrenko, A., Doglioli, A., Martinez, E. & Alvain, S. Data from: Basin-scale biogeochemical and ecological impacts of islands in the tropical Pacific Ocean (v1.0.0). Zenodo https://doi.org/10.5281/zenodo.6416130 (2022).

  • Messié, M. Code for: Basin-scale biogeochemical and ecological impacts of islands in the tropical Pacific Ocean (v1.0.0). Zenodo https://doi.org/10.5281/zenodo.6494328 (2022).


  • Source: Ecology - nature.com

    Migration Summit addresses education and workforce development in displacement

    Indigenous knowledge reveals history of fire-prone California forest