in

Behavioural and neural responses of crabs show evidence for selective attention in predator avoidance

  • Faisal, A. A., Selen, L. P. J. & Wolpert, D. M. Noise in the nervous system. Nat. Rev. Neurosci. 9, 292–303 (2008).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Tsetsos, K. et al. Economic irrationality is optimal during noisy decision making. Proc. Natl. Acad. Sci. 113, 3102–3107 (2016).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Bushnell, P. J. Behavioral approaches to the assessment of attention in animals. Psychopharmacology 138, 231–259 (1998).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Katsuki, F. & Constantinidis, C. Bottom-up and top-down attention: Different processes and overlapping neural systems. Neuroscientist 20, 509–521 (2014).

    PubMed 
    Article 

    Google Scholar 

  • Moore, T. & Zirnsak, M. Neural mechanisms of selective visual attention. Annu. Rev. Psychol. 68, 47–72 (2017).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Ferguson, K. I. & Stiling, P. Non-additive effects of multiple natural enemies on aphid populations. Oecologia 108, 375–379 (1996).

    ADS 
    PubMed 
    Article 

    Google Scholar 

  • Sih, A., Englund, G. & Wooster, D. Emergent impacts of multiple predators on prey. Trends Ecol. Evol. 13, 350–355 (1998).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Soluk, D. A. & Collins, N. C. Synergistic interactions between fish and stoneflies: Facilitation and interference among stream predators. Oikos. 52, 94–100 (1988).

    Article 

    Google Scholar 

  • Cooper, W. E., Pérez-Mellado, V. & Hawlena, D. Number, speeds, and approach paths of predators affect escape behavior by the Balearic lizard, Podarcis lilfordi. J. Herpetol. 41, 197–204 (2007).

    Article 

    Google Scholar 

  • Relyea, R. A. How prey respond to combined predators: A review and an empirical test. Ecology 84, 1827–1839 (2003).

    Article 

    Google Scholar 

  • Krupa, J. J. & Sih, A. Fishing spiders, green sunfish, and a stream-dwelling water strider: Male–female conflict and prey responses to single versus multiple predator environments. Oecologia 117, 258–265 (1998).

    ADS 
    PubMed 
    Article 

    Google Scholar 

  • Nityananda, V. Attention-like processes in insects. Proc. R. Soc. B Biol. Sci. 283, 20161986 (2016).

    Article 

    Google Scholar 

  • Amo, L., López, P. & Martín, J. in Annales Zoologici Fennici, 671–679 (JSTOR).

  • Bagheri, Z. M., Donohue, C. G. & Hemmi, J. M. Evidence of predictive selective attention in fiddler crabs during escape in the natural environment. J. Exp. Biol. 223, 234963 (2020).

    Article 

    Google Scholar 

  • Geist, C., Liao, J., Libby, S. & Blumstein, D. T. Does intruder group size and orientation affect flight initiation distance in birds?. Anim. Biodivers. Conserv. 28, 69–73 (2005).

    Google Scholar 

  • McIntosh, A. R. & Peckarsky, B. L. Criteria determining behavioural responses to multiple predators by a stream mayfly. Oikos. 554–564 (1999).

  • Hemmi, J. M. & Tomsic, D. The neuroethology of escape in crabs: From sensory ecology to neurons and back. Curr. Opin. Neurobiol. 22, 194–200 (2012).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Zeil, J. & Hemmi, J. M. The visual ecology of fiddler crabs. J. Comp. Physiol. A. 192, 1–25 (2006).

    ADS 
    Article 

    Google Scholar 

  • Nalbach, H.-O., Nalbach, G. & Forzin, L. Visual control of eye-stalk orientation in crabs: Vertical optokinetics, visual fixation of the horizon, and eye design. J. Comp. Physiol. A. 165, 577–587 (1989).

    Article 

    Google Scholar 

  • Zeil, J. & Al-Mutairi, M. The variation of resolution and of ommatidial dimensions in the compound eyes of the fiddler crab Uca lactea annulipes (Ocypodidae, Brachyura, Decapoda). J. Exp. Biol. 199, 1569–1577 (1996).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Howard, J. & Snyder, A. W. Transduction as a limitation on compound eye function and design. Proc. R. Soc. Lond. Series B Biol. Sci. 217, 287–307 (1983).

    ADS 

    Google Scholar 

  • Land, M. F. Visual acuity in insects. Annu. Rev. Entomol. 42, 147–177 (1997).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Land, M. F. & Nilsson, D.-E. Animal Eyes (OUP, 2012).

    Book 

    Google Scholar 

  • Bagheri, Z. M. et al. A new method for mapping spatial resolution in compound eyes suggests two visual streaks in fiddler crabs. J. Exp. Biol. 223, 210195 (2020).

    Article 

    Google Scholar 

  • Smolka, J. & Hemmi, J. M. Topography of vision and behaviour. J. Exp. Biol. 212, 3522–3532 (2009).

    PubMed 
    Article 

    Google Scholar 

  • Land, M. & Layne, J. The visual control of behaviour in fiddler crabs. J. Comp. Physiol. A. 177, 91–103 (1995).

    Article 

    Google Scholar 

  • Layne, J., Land, M. & Zeil, J. Fiddler crabs use the visual horizon to distinguish predators from conspecifics: A review of the evidence. J. Mar. Biol. Assoc. UK. 77, 43–54 (1997).

    Article 

    Google Scholar 

  • Hemmi, J. M. Predator avoidance in fiddler crabs: 1. Escape decisions in relation to the risk of predation. Animal Behav. 69, 603–614 (2005).

    Article 

    Google Scholar 

  • Layne, J. E. Retinal location is the key to identifying predators in fiddler crabs (Uca pugilator). J. Exp. Biol. 201, 2253–2261 (1998).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Nalbach, H.-O. Frontiers in Crustacean Neurobiology 165–172 (Springer, 1990).

    Book 

    Google Scholar 

  • Smolka, J., Zeil, J. & Hemmi, J. M. Natural visual cues eliciting predator avoidance in fiddler crabs. Proc. R. Soc. B Biol. Sci. 278, 3584–3592 (2011).

    Article 

    Google Scholar 

  • Hemmi, J. M. Predator avoidance in fiddler crabs: 2. The visual cues. Animal Behav. 69, 615–625 (2005).

    Article 

    Google Scholar 

  • Hemmi, J. M. & Pfeil, A. A multi-stage anti-predator response increases information on predation risk. J. Exp. Biol. 213, 1484–1489 (2010).

    PubMed 
    Article 

    Google Scholar 

  • Smolka, J., Raderschall, C. A. & Hemmi, J. M. Flicker is part of a multi-cue response criterion in fiddler crab predator avoidance. J. Exp. Biol. 216, 1219–1224 (2013).

    PubMed 

    Google Scholar 

  • How, M. J., Pignatelli, V., Temple, S. E., Marshall, N. J. & Hemmi, J. M. High e-vector acuity in the polarisation vision system of the fiddler crab Uca vomeris. J. Exp. Biol. 215, 2128–2134 (2012).

    PubMed 
    Article 

    Google Scholar 

  • Paulk, A. C. et al. Selective attention in the honeybee optic lobes precedes behavioral choices. Proc. Natl. Acad. Sci. 111, 5006–5011 (2014).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Tang, S. & Juusola, M. Intrinsic activity in the fly brain gates visual information during behavioral choices. Nat. Precedings. 1–1 (2010).

  • Bagheri, Z. M., Cazzolato, B. S., Grainger, S., O’Carroll, D. C. & Wiederman, S. D. An autonomous robot inspired by insect neurophysiology pursues moving features in natural environments. J. Neural Eng. 14, 046030 (2017).

    ADS 
    PubMed 
    Article 

    Google Scholar 

  • Chancán, M., Hernandez-Nunez, L., Narendra, A., Barron, A. B. & Milford, M. A hybrid compact neural architecture for visual place recognition. IEEE Robot. Automat. Lett. 5, 993–1000 (2020).

    Article 

    Google Scholar 

  • Colonnier, F., Ramirez-Martinez, S., Viollet, S. & Ruffier, F. A bio-inspired sighted robot chases like a hoverfly. Bioinspir. Biomim. 14, 036002 (2019).

    ADS 
    PubMed 
    Article 

    Google Scholar 

  • Medan, V., Oliva, D. & Tomsic, D. Characterization of lobula giant neurons responsive to visual stimuli that elicit escape behaviors in the crab Chasmagnathus. J. Neurophysiol. 98, 2414–2428 (2007).

    PubMed 
    Article 

    Google Scholar 

  • Oliva, D. & Tomsic, D. Computation of object approach by a system of visual motion-sensitive neurons in the crab Neohelice. J. Neurophysiol. 112, 1477–1490 (2014).

    PubMed 
    Article 

    Google Scholar 

  • Oliva, D. & Tomsic, D. Object approach computation by a giant neuron and its relationship with the speed of escape in the crab Neohelice. J. Exp. Biol. 219, 3339–3352 (2016).

    PubMed 

    Google Scholar 

  • Sztarker, J., Strausfeld, N. J. & Tomsic, D. Organization of optic lobes that support motion detection in a semiterrestrial crab. J. Comparat. Neurol. 493, 396–411 (2005).

    Article 

    Google Scholar 

  • Medan, V., De Astrada, M. B., Scarano, F. & Tomsic, D. A network of visual motion-sensitive neurons for computing object position in an arthropod. J. Neurosci. 35, 6654–6666 (2015).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Tomsic, D. & Sztarker, J. in Oxford Research Encyclopedia of Neuroscience (2019).

  • Sztarker, J. & Tomsic, D. Neuronal correlates of the visually elicited escape response of the crab Chasmagnathus upon seasonal variations, stimuli changes and perceptual alterations. J. Comp. Physiol. A. 194, 587–596 (2008).

    Article 

    Google Scholar 

  • Tomsic, D., de Astrada, M. B. & Sztarker, J. Identification of individual neurons reflecting short-and long-term visual memory in an arthropodo. J. Neurosci. 23, 8539–8546 (2003).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Layne, J. E., Barnes, W. J. P. & Duncan, L. M. J. Mechanisms of homing in the fiddler crab Uca rapax 1. Spatial and temporal characteristics of a system of small-scale navigation. J. Exp. Biol. 206, 4413–4423 (2003).

    PubMed 
    Article 

    Google Scholar 

  • Dahmen, H., Wahl, V. L., Pfeffer, S. E., Mallot, H. A. & Wittlinger, M. Naturalistic path integration of Cataglyphis desert ants on an air-cushioned lightweight spherical treadmill. J. Exp. Biol. 220, 634–644 (2017).

    PubMed 
    Article 

    Google Scholar 

  • Hemmi, J. M. & Merkle, T. High stimulus specificity characterizes anti-predator habituation under natural conditions. Proc. R. Soc. B Biol. Sci. 276, 4381–4388 (2009).

    Article 

    Google Scholar 

  • Scarano, F. & Tomsic, D. Escape response of the crab Neohelice to computer generated looming and translational visual danger stimuli. J. Physiol.-Paris 108, 141–147 (2014).

    PubMed 
    Article 

    Google Scholar 

  • Ryan, T. P. & Morgan, J. P. Modern experimental design. J. Stat. Theory Practice 1, 501–506 (2007).

    MATH 
    Article 

    Google Scholar 

  • Hemmi, J. M. & Zeil, J. Burrow surveillance in fiddler crabs I. Description of behaviour. J. Exp. Biol. 206, 3935–3950 (2003).

    PubMed 
    Article 

    Google Scholar 

  • Bates, D., Mächler, M., Bolker, B. & Walker, S. Fitting linear mixed-effects models using lme4. (2014).

  • emmeans: Estimated Marginal Means, aka Least-Squares Means. v. R package version 1.5.2-1. (2020).

  • Cremers, J. Bpnreg: Bayesian projected normal regression models for circular data. R Package Version 1, 3 (2018).

    Google Scholar 

  • Cremers, J. & Klugkist, I. One direction? A tutorial for circular data analysis using R with examples in cognitive psychology. Front. Psychol. 2040 (2018).

  • Oliva, D., Medan, V. & Tomsic, D. Escape behavior and neuronal responses to looming stimuli in the crab Chasmagnathus granulatus (Decapoda: Grapsidae). J. Exp. Biol. 210, 865–880 (2007).

    PubMed 
    Article 

    Google Scholar 

  • Gabbiani, F., Krapp, H. G. & Laurent, G. Computation of object approach by a wide-field, motion-sensitive neuron. J. Neurosci. 19, 1122–1141 (1999).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Simultaneous Inference in General Parametric Models. v. R package version v1.4-10 (2019).

  • Avargues-Weber, A., Deisig, N. & Giurfa, M. Visual cognition in social insects. Annu. Rev. Entomol. 56, 423–443 (2011).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Avarguès-Weber, A. & Giurfa, M. Conceptual learning by miniature brains. Proc. R. Soc. B Biol. Sci. 280, 20131907 (2013).

    Article 

    Google Scholar 

  • De Bivort, B. L. & Van Swinderen, B. Evidence for selective attention in the insect brain. Curr. Opin. Insect Sci. 15, 9–15 (2016).

    PubMed 
    Article 

    Google Scholar 

  • Klapoetke, N. C. et al. Ultra-selective looming detection from radial motion opponency. Nature 551, 237–241 (2017).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Von Reyn, C. R. et al. A spike-timing mechanism for action selection. Nat. Neurosci. 17, 962–970 (2014).

    Article 
    CAS 

    Google Scholar 

  • Fotowat, H. & Gabbiani, F. Collision detection as a model for sensory-motor integration. Annu. Rev. Neurosci. 34, 1–19 (2011).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Strausfeld, N. J. & Olea-Rowe, B. Convergent evolution of optic lobe neuropil in Pancrustacea. Arthropod. Struct. Dev. 61, 101040 (2021).

    PubMed 
    Article 

    Google Scholar 

  • Tomsic, D. Visual motion processing subserving behavior in crabs. Curr. Opin. Neurobiol. 41, 113–121 (2016).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Giribet, G. & Edgecombe, G. D. The phylogeny and evolutionary history of arthropods. Curr. Biol. 29, R592–R602 (2019).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Christian, E. V. Sprung der Collembolen. Zoologische Jahrbucher. Abteilung fur Systematik, Okologie und Geographie der Tiere (1979).

  • Brackenbury, J. Regulation of swimming in the Culex pipiens (Diptera, Culicidae) pupa: Kinematics and locomotory trajectories. J. Exp. Biol. 202, 2521–2529 (1999).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Domenici, P. & Blake, R. W. Escape trajectories in angelfish (Pterophyllum eimekei). J. Exp. Biol. 177, 253–272 (1993).

    Article 

    Google Scholar 

  • Kimura, H. & Kawabata, Y. Effect of initial body orientation on escape probability of prey fish escaping from predators. Biol. Open. 7, bio023812 (2018).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Martín, J. & López, P. The escape response of juvenile Psammodromus algirus lizards. J. Comp. Psychol. 110, 187 (1996).

    Article 

    Google Scholar 

  • Lancer, B. H., Evans, B. J. E., Fabian, J. M., O’Carroll, D. C. & Wiederman, S. D. A target-detecting visual neuron in the dragonfly locks on to selectively attended targets. J. Neurosci. 39, 8497–8509 (2019).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Nityananda, V. & Pattrick, J. G. Bumblebee visual search for multiple learned target types. J. Exp. Biol. 216, 4154–4160 (2013).

    PubMed 

    Google Scholar 

  • Pollack, G. S. Selective attention in an insect auditory neuron. J. Neurosci. 8, 2635–2639 (1988).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Rossel, S. Binocular vision in insects: How mantids solve the correspondence problem. Proc. Natl. Acad. Sci. 93, 13229–13232 (1996).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Wiederman, S. D. & O’Carroll, D. C. Selective attention in an insect visual neuron. Curr. Biol. 23, 156–161 (2013).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Jackson, R. R. & Cross, F. R. Spider cognition. Adv. Insect Physiol. 41, 115–174 (2011).

    Article 

    Google Scholar 

  • Jackson, R. R. & Li, D. One-encounter search-image formation by araneophagic spiders. Anim. Cogn. 7, 247–254 (2004).

    PubMed 
    Article 

    Google Scholar 

  • Guest, B. B. & Gray, J. R. Responses of a looming-sensitive neuron to compound and paired object approaches. J. Neurophysiol. 95, 1428–1441 (2006).

    PubMed 
    Article 

    Google Scholar 

  • Eliassen, S., Jørgensen, C., Mangel, M. & Giske, J. Quantifying the adaptive value of learning in foraging behavior. Am. Nat. 174, 478–489 (2009).

    PubMed 
    Article 

    Google Scholar 

  • Eliassen, S., Andersen, B. S., Jørgensen, C. & Giske, J. From sensing to emergent adaptations: Modelling the proximate architecture for decision-making. Ecol. Model. 326, 90–100 (2016).

    Article 

    Google Scholar 

  • Gigerenzer, G. Why heuristics work. Perspect. Psychol. Sci. 3, 20–29 (2008).

    PubMed 
    Article 

    Google Scholar 


  • Source: Ecology - nature.com

    Convergent evolution of a labile nutritional symbiosis in ants

    Evan Leppink: Seeking a way to better stabilize the fusion environment