in

Beyond Demonstrators—tackling fundamental problems in amplifying nature-based solutions for the post-COVID-19 world

  • 1.

    Rosenbloom, D. & Markard, J. A COVID-19 recovery for climate. Science 368, 447 (2020).

    CAS 

    Google Scholar 

  • 2.

    European Commission. Towards an EU Research and Innovation policy agenda for nature-based solutions and renaturing cities. Final Report of the Horizon 2020 expert group on nature-based solutions and re-naturing cities, (European Commission, Brussels, 2015).

  • 3.

    Cohen-Shacham, E. et al. Core principles for successfully implementing and upscaling nature-based solutions. Environ. Sci. Policy 98, 20–29 (2019).

    Google Scholar 

  • 4.

    Seddon, N., Turner, B., Berry, P., Chausson, A. & Girardin, C. A. J. Grounding nature-based climate solutions in sound biodiversity science. Nat. Clim. Change 9, 84–87 (2019).

    Google Scholar 

  • 5.

    Keeler, B. L. et al. Social-ecological and technological factors moderate the value of urban nature. Nat. Sustain 2, 29–38 (2019).

    Google Scholar 

  • 6.

    Escobedo, F. J., Giannico, V., Jim, C. Y., Sanesi, G. & Lafortezza, R. Urban forests, ecosystem services, green infrastructure and nature-based solutions: Nexus or evolving metaphors? Urban For. Urban Greening 37, 3–12 (2019).

    Google Scholar 

  • 7.

    Pan, H., Page, J., Cong, C., Barthel, S. & Kalantari, Z. How ecosystems services drive urban growth: Integrating nature-based solutions. Anthropocene 35, 100297 (2021).

    Google Scholar 

  • 8.

    Keesstra, S. et al. The superior effect of nature based solutions in land management for enhancing ecosystem services. Sci. Total Environ. 610-611, 997–1009 (2018).

    CAS 

    Google Scholar 

  • 9.

    Hack, J. & Schröter, B. Nature-based solutions for river restoration in metropolitan areas. Brears, R. The Palgrave Encyclopedia of Urban and Regional Futures. 1–10 (Springer International Publishing, Cham, 2021).

  • 10.

    Lam, D. P. M. et al. Scaling the impact of sustainability initiatives: a typology of amplification processes. Urban Transform 2, 3 (2020).

    Google Scholar 

  • 11.

    Seddon, N. et al. Global recognition of the importance of nature-based solutions to the impacts of climate change. Glob. Sustain 3, e15 (2020).

    Google Scholar 

  • 12.

    Faivre, N., Fritz, M., Freitas, T., de Boissezon, B. & Vandewoestijne, S. Nature-based solutions in the EU: innovating with nature to address social, economic and environmental challenges. Environ. Res. 159, 509–518 (2017).

    CAS 

    Google Scholar 

  • 13.

    Sabel, C. F. & Zeitlin, J. Experimentalist Governance. Levi-Faur, D. The Oxford Handbook of Governance. 169–183 (Oxford Univ. Press, Oxford, 2012).

  • 14.

    Kern, K. Cities as leaders in EU multilevel climate governance: embedded upscaling of local experiments in Europe. Environ. Polit. 28, 125–145 (2019).

    Google Scholar 

  • 15.

    Díaz, S. et al. Pervasive human-driven decline of life on Earth points to the need for transformative change. Science 366, eaax3100 (2019).

    Google Scholar 

  • 16.

    Chini, C. M., Canning, J. F., Schreiber, K. L., Peschel, J. M. & Stillwell, A. S. The green experiment: cities, green stormwater infrastructure, and sustainability. Sustainability 9 (2017).

  • 17.

    McPhearson, T. et al. Radical changes are needed for transformations to a good Anthropocene. npj Urban Sustain. 1, 5 (2021).

    Google Scholar 

  • 18.

    Scoones, I. et al. Transformations to sustainability: combining structural, systemic and enabling approaches. Curr. Opin. Environ. Sustain. 42, 65–75 (2020).

    Google Scholar 

  • 19.

    Han, S. & Kuhlicke, C. Reducing hydro-meteorological risk by nature-based solutions: what do we know about people’s perceptions? Water 11, 2599 (2019).

    Google Scholar 

  • 20.

    Albert, C. et al. Planning nature-based solutions: principles, steps, and insights. Ambio, 1446–1461 (2020).

  • 21.

    Matthews, T., Lo, A. Y. & Byrne, J. A. Reconceptualizing green infrastructure for climate change adaptation: barriers to adoption and drivers for uptake by spatial planners. Landsc. Urban Planning 138, 155–163 (2015).

    Google Scholar 

  • 22.

    Myllyvirta, L. China’s CO2 emissions have surged back from the coronavirus lockdown, rising by 4-5% year-on-year in May, analysis of new government data shows. https://www.carbonbrief.org/analysis-chinas-co2-emissions-surged-past-pre-coronavirus-levels-in-may (2020).

  • 23.

    Samuelsson, K., Barthel, S., Colding, J., Macassa, G. & Giusti, M. Urban nature as a source of resilience during social distancing amidst the coronavirus pandemic. Preprint at https://doi.org/10.31219/osf.io/3wx5a (2020).

  • 24.

    Mahoney, J. Path dependence in historical sociology. Theory Soc. 29, 507–548 (2000).

    Google Scholar 

  • 25.

    Davies, C. & Lafortezza, R. Transitional path to the adoption of nature-based solutions. Land Use Policy 80, 406–409 (2019).

    Google Scholar 

  • 26.

    Kuzemko, C. et al. Covid-19 and the politics of sustainable energy transitions. Energy Res. Soc. Sci. 68, 101685 (2020).

    Google Scholar 

  • 27.

    Kanda, W. & Kivimaa, P. What opportunities could the COVID-19 outbreak offer for sustainability transitions research on electricity and mobility? Energy Res. Soc. Sci. 68, 101666 (2020).

    Google Scholar 

  • 28.

    Cohen, M. J. Does the COVID-19 outbreak mark the onset of a sustainable consumption transition? Sustain.: Sci. Pract. Policy 16, 1–3 (2020).

    Google Scholar 

  • 29.

    Pearson, R. M., Sievers, M., McClure, E. C., Turschwell, M. P. & Connolly, R. M. COVID-19 recovery can benefit biodiversity. Science 368, 838 (2020).

    Google Scholar 

  • 30.

    Everard, M., Johnston, P., Santillo, D. & Staddon, C. The role of ecosystems in mitigation and management of Covid-19 and other zoonoses. Environ. Sci. Policy 111, 7–17 (2020).

    CAS 

    Google Scholar 

  • 31.

    Kavousi, J., Goudarzi, F., Izadi, M. & Gardner, C. J. Conservation needs to evolve to survive in the post-pandemic world. Glob. Change Biol. 26, 4651–4653 (2020).

    Google Scholar 

  • 32.

    Lal, R. Home gardening and urban agriculture for advancing food and nutritional security in response to the COVID-19 pandemic. Food Sec., 1–6 (2020).

  • 33.

    Khetan, A. K. COVID-19: why declining biodiversity puts us at greater risk for emerging infectious diseases, and what we can do. J. Gen. Intern. Med. 35, 2746–2747 (2020).

    Google Scholar 

  • 34.

    Sugiyama, T. et al. Four Recommendations for Greener, Healthier Cities in the Post-Pandemic. https://www.thenatureofcities.com/2020/06/30/four-recommendations-for-greener-healthier-cities-in-the-post-pandemic/ (2020).

  • 35.

    Thorslund, J. et al. Wetlands as large-scale nature-based solutions: status and challenges for research, engineering and management. Ecol. Eng. 108, 489–497 (2017).

    Google Scholar 

  • 36.

    Albert, C. et al. Addressing societal challenges through nature-based solutions: how can landscape planning and governance research contribute? Landsc.Urban Plan. 182, 12–21 (2019).

    Google Scholar 

  • 37.

    Albert, C., Von Haaren, C., Othengrafen, F., Krätzig, S. & Saathoff, W. Scaling policy conflicts in ecosystem services governance: a framework for spatial. Analysis. J. Environ. Policy Plan. 19, 574–592 (2017).

    Google Scholar 

  • 38.

    Hutchins, M. G. et al. Why scale is vital to plan optimal nature-based solutions for resilient cities. Environ. Res. Lett. 16, 044008 (2021).

    Google Scholar 

  • 39.

    Raška, P., Slavíková, L. & Sheehan, J. in Nature-Based Flood Risk Management on Private Land: Disciplinary Perspectives on a Multidisciplinary Challenge 9–20 (Springer International Publishing, 2019).

  • 40.

    Frantzeskaki, N. et al. Nature-based solutions for urban climate change adaptation: linking science, policy, and practice communities for evidence-based decision-making. BioScience 69, 455–466 (2019).

    Google Scholar 

  • 41.

    Watkin, L. J., Ruangpan, L., Vojinovic, Z., Weesakul, S. & Torres, A. S. A framework for assessing benefits of implemented nature-based solutions. Sustainability 11, 6788 (2019).

    Google Scholar 

  • 42.

    Wurzel, R. K. W., Liefferink, D. & Torney, D. Pioneers, leaders and followers in multilevel and polycentric climate governance. Environ. Polit. 28, 1–21 (2019).

    Google Scholar 

  • 43.

    Frantzeskaki, N. et al. Examining the policy needs for implementing nature-based solutions in cities: findings from city-wide transdisciplinary experiences in Glasgow (UK), Genk (Belgium) and Poznań (Poland). Land Use Policy 96, 104688 (2020).

    Google Scholar 

  • 44.

    Zingraff-Hamed, A. et al. Governance models for nature-based solutions: cases from Germany. Ambio 50, 1610–1627 (2020).

    Google Scholar 

  • 45.

    Toxopeus, H. et al. How ‘just’ is hybrid governance of urban nature-based solutions? Cities 105, 102839 (2020).

    Google Scholar 

  • 46.

    Wamsler, C. et al. Environmental and climate policy integration: targeted strategies for overcoming barriers to nature-based solutions and climate change adaptation. J. Clean. Prod. 247, 119154 (2020).

    Google Scholar 

  • 47.

    Pérez Rubi, M. & Hack, J. Co-design of experimental nature-based solutions for decentralized dry-weather runoff treatment retrofitted in a densely urbanized area in Central America. Ambio 50, 1498–1513 (2021).

    Google Scholar 

  • 48.

    Chapa, F., Pérez, M. & Hack, J. Experimenting transition to sustainable urban drainage systems—identifying constraints and unintended processes in a tropical highly urbanized. Watershed. Water 12, 3554 (2020).

    Google Scholar 

  • 49.

    Chen, V., Bonilla Brenes, J. R., Chapa, F. & Hack, J. Development and modelling of realistic retrofitted Nature-based Solution scenarios to reduce flood occurrence at the catchment scale. Ambio 50, 1462–1476 (2021).

    Google Scholar 

  • 50.

    Hüesker, F. & Moss, T. The politics of multi-scalar action in river basin management: Implementing the EU Water Framework Directive (WFD). Land Use Policy 42, 38–47 (2015).

    Google Scholar 

  • 51.

    WBCSD. Incentives for Natural Infrastructure: review of existing policies, incentives and barriers related to permitting, finance and insurance of natural infrastructure. (World Business Council for Sustainable Development, Geneva, 2017).

  • 52.

    Nesshöver, C. et al. The science, policy and practice of nature-based solutions: an interdisciplinary perspective. Sci. Total Environ. 579, 1215–1227 (2017).

    Google Scholar 

  • 53.

    Toxopeus, H. S. Taking Action for Urban Nature: Business Model Catalogue, NATURVATION Guide (2019).

  • 54.

    Duraiappah, A. K. et al. Managing the mismatches to provide ecosystem services for human well-being: a conceptual framework for understanding the New Commons. Curr. Opin.Environ. Sustain 7, 94–100 (2014).

    Google Scholar 

  • 55.

    Young, O. R. Vertical interplay among scale-dependent environmental and resource regimes. Ecol. Soc. 11, 27 (2006).

    Google Scholar 

  • 56.

    Cumming, G. S., Cumming, D. H. M. & Redman, C. L. Scale mismatches in social-ecological systems: causes, consequences, and solutions. Ecol. Soc. 11, 14 (2006).

    Google Scholar 

  • 57.

    Naidoo, R. & Fisher, B. Sustainable development goals: pandemic reset. Nature 583, 198–201 (2020).

    CAS 

    Google Scholar 

  • 58.

    Fyfe, J. C. et al. Quantifying the influence of short-term emission reductions on climate. Sci. Adv. 7, eabf7133 (2021).

    CAS 

    Google Scholar 

  • 59.

    Linnér, B.-O. & Wibeck, V. Conceptualising variations in societal transformations towards sustainability. Environ. Sci.Pol. 106, 221–227 (2020).

    Google Scholar 

  • 60.

    Harrabin, R. Coronavirus: Lockdown ‘could boost wild flowers’. https://www.bbc.com/news/science-environment-52215273 (2020).

  • 61.

    Bratman, G. N. et al. Nature and mental health: an ecosystem service perspective. Sci. Adv. 5, eaax0903 (2019).

    Google Scholar 

  • 62.

    Honey-Rosés, J. et al. The impact of COVID-19 on public space: an early review of the emerging questions—design, perceptions and inequities. Cities & Health, 1-17(2020).

  • 63.

    Sanyé-Mengual, E., Anguelovski, I., Oliver-Solà, J., Montero, J. I. & Rieradevall, J. Resolving differing stakeholder perceptions of urban rooftop farming in Mediterranean cities: promoting food production as a driver for innovative forms of urban agriculture. Agric. Human Values 33, 101–120 (2016).

    Google Scholar 

  • 64.

    PIANC. Guide for applying Working with Nature to navigation infrastructure projects. (Brussels, Belgium, 2018).

  • 65.

    Rijke, J., van Herk, S., Zevenbergen, C. & Ashley, R. Room for the River: delivering integrated river basin management in the Netherlands. Int. J. River Basin Manage. 10, 369–382 (2012). https://doi.org/10.1080/15715124.2012.739173.

  • 66.

    Li, H., Ding, L., Ren, M., Li, C. & Wang, H. Sponge City Construction in China: A Survey of the Challenges and Opportunities. Water (Australia) 9, 594 (2017).

  • 67.

    Kurth, A.-M. & Schirmer, M. Thirty years of river restoration in Switzerland: implemented measures and lessons learned. Environ. Earth Sci. 72, 2065–2079 (2014). https://doi.org/10.1007/s12665-014-3115-y.

  • 68.

    Petty, K. Wildflowers on road verges: an uplifting sight during the coronavirus lockdown. (2020). https://www.plantlife.org.uk/uk/blog/wildflowers-on-road-verges-an-uplifting-sight-during-the-coronavirus-lockdown.


  • Source: Ecology - nature.com

    3 Questions: What a single car can say about traffic

    The fabrication and assessment of mosquito repellent cream for outdoor protection