in

Biocrusts mediate a new mechanism for land degradation under a changing climate

[adace-ad id="91168"]
  • 1.

    Science Plan and Implementation Strategy IGBP Report No. 53/IHDP Report No. 19 (Global Land Project, 2005).

  • 2.

    Millennium Ecosystem Assessment—Ecosystems and Human Well-Being: Desertification Synthesis Encyclopedia of the Anthropocene vols 1–5 (MEA, 2017).

  • 3.

    Huang, J., Yu, H., Guan, X., Wang, G. & Guo, R. Accelerated dryland expansion under climate change. Nat. Clim. Change 6, 166–171 (2015).

    Article 

    Google Scholar 

  • 4.

    Pimm, S. L. The complexity and stability of ecosystems. Nature 307, 321–326 (1984).

    Article 

    Google Scholar 

  • 5.

    Tilman, D. & Downing, J. A. Biodiversity and stability in grasslands. Nature 367, 363–365 (1994).

    Article 

    Google Scholar 

  • 6.

    Belnap, J. Surface disturbances: their role in acceleration desertification. Environ. Monit. Assess. 37, 38–57 (1995).

    Article 

    Google Scholar 

  • 7.

    Zhao, Y., Jia, R. L. & Wang, J. Towards stopping land degradation in drylands: water-saving techniques for cultivating biocrusts in situ. Land Degrad. Dev. 30, 2336–2346 (2019).

    Article 

    Google Scholar 

  • 8.

    Rodriguez-Caballero, E. et al. Dryland photoautotrophic soil surface communities endangered by global change. Nat. Geosci. 11, 185–189 (2018).

    CAS 
    Article 

    Google Scholar 

  • 9.

    Coe, K. K. & Sparks, J. P. Physiology-based prognostic modeling of the influence of changes in precipitation on a keystone dryland plant species. Oecologia 176, 933–942 (2014).

    Article 

    Google Scholar 

  • 10.

    Ferrenberg, S., Tucker, C. L. & Reed, S. C. Biological soil crusts: diminutive communities of potential global importance. Front. Ecol. Environ. 15, 160–167 (2017).

    Article 

    Google Scholar 

  • 11.

    Belnap, J. & Gillette, D. A. Soil surface disturbance: impacts on potential wind erodibility of sand desert soils in SE Utah, USA. Land Degrad. Dev. 8, 355–362 (1997).

    Article 

    Google Scholar 

  • 12.

    Rutherford, W. A. et al. Albedo feedbacks to future climate via climate change impacts on dryland biocrusts. Sci. Rep. 7, 44188 (2017).

  • 13.

    Duniway, M. C. et al. Wind erosion and dust from US drylands: a review of causes, consequences, and solutions in a changing world. Ecosphere 10, e02650 (2019).

  • 14.

    Ferrenberg, S., Faist, A. M., Howell, A. & Reed, S. C. Biocrusts enhance soil fertility and Bromus tectorum growth, and interact with warming to influence germination. Plant Soil 429, 77–90 (2018).

    CAS 
    Article 

    Google Scholar 

  • 15.

    Eldridge, D. J. et al. The pervasive and multifaceted influence of biocrusts on water in the world’s drylands. Glob. Change Biol. 26, 6003–6014 (2020).

  • 16.

    Ferrenberg, S., Reed, S. C. & Belnap, J. Climate change and physical disturbance cause similar community shifts in biological soil crusts. Proc. Natl Acad. Sci. USA 112, 12116–12121 (2015).

    CAS 
    Article 

    Google Scholar 

  • 17.

    Reed, S. C. et al. Changes to dryland rainfall result in rapid moss mortality and altered soil fertility. Nat. Clim. Change 2, 752–755 (2012).

    CAS 
    Article 

    Google Scholar 

  • 18.

    Concostrina-Zubiri, L. et al. Biological soil crusts across disturbance-recovery scenarios: effect of grazing regime on community dynamics. Ecol. Appl. 24, 1863–1877 (2014).

    CAS 
    Article 

    Google Scholar 

  • 19.

    Weber, B., Bowker, M., Zhang, Y. & Belnap, J. in Biological Soil Crusts: An Organizing Principle in Drylands (eds Weber, B., Büdel, B. & Belnap, J.) 479–498 (Springer, 2016).

  • 20.

    Reynolds, J. F. et al. Global desertification: building a science for dryland development. Science 316, 847–851 (2007).

    CAS 
    Article 

    Google Scholar 

  • 21.

    Berdugo, M. et al. Global ecosystem thresholds driven by aridity. Science 367, 787–790 (2020).

    CAS 
    Article 

    Google Scholar 

  • 22.

    Bestelmeyer, B. T. et al. Analysis of abrupt transitions in ecological systems. Ecosphere 2, e03360 (2011).

    Article 

    Google Scholar 

  • 23.

    Bestelmeyer, B. T. et al. Desertification, land use, and the transformation of global drylands. Front. Ecol. Environ. 13, 28–36 (2015).

    Article 

    Google Scholar 

  • 24.

    Beisner, B., Haydon, D. & Cuddington, K. Alternative stable states in ecology. Front. Ecol. Environ. 1, 376–382 (2003).

  • 25.

    Fukami, T. & Nakajima, M. Community assembly: alternative stable states or alternative transient states? Ecol. Lett. 14, 973–984 (2011).

    Article 

    Google Scholar 

  • 26.

    Belnap, J. & Büdel, B. in Biological Soil Crusts: An Organizing Principle in Drylands (eds Weber, B., Büdel, B. & Belnap, J.) 305–320 (Springer, 2016).

  • 27.

    Belnap, J. & Warren, S. D. Measuring restoration success: a lesson from Patton’s tank tracks. Ecol. Bull. 79, 33 (1998).

  • 28.

    Belnap, J. & Elderidge, D. in Biological Soil Crusts: Structure, Function and Management (eds Belnap, J. & Lange, O. L.) 363–383 (Springer, 2001).

  • 29.

    Turner, M. G. Disturbance and landscape dynamics in a changing world. Ecology 91, 2833–2849 (2010).

    Article 

    Google Scholar 

  • 30.

    Scheffer, M. & Carpenter, S. R. Catastrophic regime shifts in ecosystems: linking theory to observation. Trends Ecol. Evol. 18, 648–656 (2003).

    Article 

    Google Scholar 

  • 31.

    Sala, O. E. & Lauenroth, W. K. Small rainfall events: an ecological role in semiarid regions. Oecologia 53, 301–304 (1982).

  • 32.

    Cayan, D. R. et al. Future dryness in the Southwest US and the hydrology of the early 21st century drought. Proc. Natl Acad. Sci. USA 107, 21271–21276 (2010).

    CAS 
    Article 

    Google Scholar 

  • 33.

    Christensen, N. S., Wood, A. W., Nathalie, V., Lettenmaier, D. P. & Palmer, R. N. The effects of climate change on the hydrology and water resources of the Colorado river basin. Clim. Change 62, 337 (2004).

    Article 

    Google Scholar 

  • 34.

    Herrick, J. et al. Field soil aggregate stability kit for soil quality and rangeland health evaluations. Catena 44, 27–35 (2001).

    Article 

    Google Scholar 

  • 35.

    Escolar, C., Martínez, I., Bowker, M. A. & Maestre, F. T. Warming reduces the growth and diversity of biological soil crusts in a semi-arid environment: implications for ecosystem structure and functioning. Phil. Trans. R. Soc. B 367, 3087–3099 (2012).

    Article 

    Google Scholar 

  • 36.

    Scheffer, M. et al. Creating a safe operating space for iconic ecosystems: manage local stressors to promote resilience to global change. Science 347, 1317–1319 (2015).

    CAS 
    Article 

    Google Scholar 

  • 37.

    Collins, S. L., Micheli, F. & Hartt, L. A method to determine rates and patterns of variability in ecological communities. Oikos 91, 285–293 (2000).

    Article 

    Google Scholar 

  • 38.

    Rillig, M. C. et al. The role of multiple global change factors in driving soil functions and microbial biodiversity. Science 366, 886–890 (2019).

    CAS 
    Article 

    Google Scholar 

  • 39.

    IPCC. Climate Change 2014: Impacts, Adaptations, and Vulnerability (eds Field, C. B. et al.) (Cambridge Univ. Press, 2014).

  • 40.

    Mirzabaev, A. et al. in IPCC Special Report on Global Warming of 1.5 °C (eds Masson-Delmotte, V. et al.) Ch. 3 (WMO, 2018).

  • 41.

    Torres-Cruz, T. J. et al. Species-specific nitrogenase activity in lichen-dominated biological soil crusts from the Colorado Plateau, USA. Plant Soil 429, 113–125 (2018).

    CAS 
    Article 

    Google Scholar 

  • 42.

    Omernik, J. M. & Griffith, G. E. Ecoregions of the conterminous United States: evolution of a hierarchical spatial framework. Environ. Manag. 54, 1249–1266 (2014).

    Article 

    Google Scholar 

  • 43.

    Kuske, C. R., Yeager, C. M., Johnson, S., Ticknor, L. O. & Belnap, J. Response and resilience of soil biocrust bacterial communities to chronic physical disturbance in arid shrublands. ISME J. 6, 886–897 (2011).

    Article 

    Google Scholar 

  • 44.

    Tucker, C. L., Ferrenberg, S. & Reed, S. C. Climatic sensitivity of dryland soil CO2 fluxes differs dramatically with biological soil crust successional state. Ecosystems 22, 15–32 (2018). https://doi.org/10.1007/s10021-018-0250-4

  • 45.

    Cable, J. M. & Huxman, T. E. Precipitation pulse size effects on Sonoran Desert soil microbial crusts. Oecologia 141, 317–324 (2004).

    Article 

    Google Scholar 

  • 46.

    Karl, T. R., Knight, R. W. & Plummer, N. Trends in high-frequency climate variability in the twentieth century. Nature 377, 217–220 (1995).

    CAS 
    Article 

    Google Scholar 

  • 47.

    Kunkel, K. E., Easterling, D. R., Redmond, K. & Hubbard, K. Temporal variations of extreme precipitation events in the United States: 1895–2000. Geophys. Res. Lett. 30, 1895–2000 (2003).

    Article 

    Google Scholar 

  • 48.

    Kim, J. A projection of the effects of the climate change induced by increased CO2 on extreme hydrologic events in the Western US. Clim. Change 68, 153–168 (2005).

    CAS 
    Article 

    Google Scholar 

  • 49.

    Smith, S. J. et al. Climate change impacts for the conterminous USA: an integrated assessment part 1. Scenarios and context. Clim. Change 69, 7–25 (2005). https://doi.org/10.1007/1-4020-3876-3_2

  • 50.

    Schwinning, S., Belnap, J., Bowling, D. R. & Ehleringer, J. R. Sensitivity of the Colorado Plateau to change: climate, ecosystems, and society. Ecol. Soc. 13, 28 (2008).

  • 51.

    Daly, C. et al. Physiographically sensitive mapping of climatological temperature and precipitation across the conterminous United States. Int. J. Climatol. 28, 2031–2064 (2008).

    Article 

    Google Scholar 

  • 52.

    Jonasson, S. The point intercept method for non-destructive estimation of biomass. Phytocoenologia 11, 385–388 (1983).

    Article 

    Google Scholar 

  • 53.

    R Core Team. R: A Language and Environment for Statistical Computing (R Foundation for Statistical Computing, 2019).

  • 54.

    Wickham, H. ggplot2: Elegant Graphics for Data Analysis (Springer-Verlag, 2016).

  • 55.

    Oksanen, A. J. et al. Vegan: Community Ecology Package. Rpackage version 2.5-7 https://CRAN.R-project.org/package=vegan (2020).

  • 56.

    Anderson, M. J. A new method for non-parametric multivariate analysis of variance. Austral Ecol. 26, 32–46 (2008).

    Article 

    Google Scholar 

  • 57.

    Venables, W. & Ripley, B. Modern Applied Statistics with S. (Springer, 2002).

  • 58.

    Lenth, R., Singmann, H., Love, J., Buerkner, P. & Herve, M. Package ‘emmeans’ https://github.com/rvlenth/emmeans (2018).

  • 59.

    Signorell, A. DescTools: Tools for Descriptive Statistics (2021).

  • 60.

    Hallett, L. M. et al. codyn: an R package of community dynamics metrics. Methods Ecol. Evol. 7, 1146–1151 (2016).

  • 61.

    Wood, S. N. Generalized Additive Models: An Introduction with R 2nd edn 1–476 (CRC/Taylor & Francis, 2017).

  • 62.

    Bürkner, P. C. brms: an R package for Bayesian multilevel models using Stan. J. Stat. Softw. 80, 1–28 (2017).

  • 63.

    Gelman, A. & Rubin, D. B. Inference from iterative simulation using multiple sequences. Stat. Sci. 7, 547–511 (1992).

    Google Scholar 

  • 64.

    Vehtari, A., Gelman, A. & Gabry, J. Practical Bayesian model evaluation using leave-one-out cross-validation and WAIC. Stat. Comput. 27, 1413–1432 (2017).

    Article 

    Google Scholar 

  • 65.

    Modrák, M., Barrett, M., Weber, F. & Coronado, E. bayesplot: Plotting for Bayesian Models. R package version 1.8.0 https://mc-stan.org/bayesplot/ (2021).

  • 66.

    Makowski, D., Ben-Shachar, M. & Lüdecke, D. bayestestR: describing effects and their uncertainty, existence and significance within the Bayesian framework. J. Open Source Softw. 4, 1541 (2019).

    Article 

    Google Scholar 

  • 67.

    Phillips, M. L., Howell, A., Lauria, C. M., Belnap, J. & Reed, S. C. Data and software code from two long-term experiments (1996–2011 and 2005–2018) at three sites on the Colorado Plateau of North America (US Geological Survey, 2021); https://doi.org/10.5066/P9RUN1TP


  • Source: Ecology - nature.com

    Understanding air pollution from space

    A dirt cheap solution? Common clay materials may help curb methane emissions