in

Biofilm matrix cloaks bacterial quorum sensing chemoattractants from predator detection

  • 1.

    Jessup CM, Forde SE, Bohannan BJM. Microbial experimental systems in ecology. In: Desharnais RA, editor. Advances in ecological research, Vol. 37. Elsevier, USA: Academic Press; 2005. p. 273–307.

  • 2.

    Brockmann D, Hufnagel L, Geisel T. The scaling laws of human travel. Nature. 2006;439:462–5.

    CAS 
    Article 

    Google Scholar 

  • 3.

    Chan SY, Liu SY, Seng Z, Chua SL. Biofilm matrix disrupts nematode motility and predatory behavior. ISME J. 2021;15:260–9.

    CAS 
    Article 

    Google Scholar 

  • 4.

    Thutupalli S, Uppaluri S, Constable GWA, Levin SA, Stone HA, Tarnita CE, et al. Farming and public goods production in Caenorhabditis elegans populations. Proc Natl Acad Sci USA. 2017;114:2289–94.

    CAS 
    Article 

    Google Scholar 

  • 5.

    Otto G. Arresting predators. Nat Rev Microbiol. 2020;18:675.

    PubMed 

    Google Scholar 

  • 6.

    Worthy SE, Haynes L, Chambers M, Bethune D, Kan E, Chung K, et al. Identification of attractive odorants released by preferred bacterial food found in the natural habitats of C. elegans. PLoS ONE. 2018;13:e0201158.

    Article 

    Google Scholar 

  • 7.

    Choi JI, Yoon K-H, Subbammal Kalichamy S, Yoon S-S, Il Lee J. A natural odor attraction between lactic acid bacteria and the nematode Caenorhabditis elegans. ISME J. 2016;10:558–67.

    CAS 
    Article 

    Google Scholar 

  • 8.

    Reilly DK, Srinivasan J. Caenorhabditis elegans olfaction. Oxford Research Encyclopedia of Neuroscience: Oxford University Press; 2017.

  • 9.

    Beale E, Li G, Tan M-W, Rumbaugh KP. Caenorhabditis elegans senses bacterial autoinducers. Appl Environ Microbiol. 2006;72:5135–7.

    CAS 
    Article 

    Google Scholar 

  • 10.

    Werner KM, Perez LJ, Ghosh R, Semmelhack MF, Bassler BL. Caenorhabditis elegans recognizes a bacterial quorum-sensing signal molecule through the AWCON neuron. J Biol Chem. 2014;289:26566–73.

    CAS 
    Article 

    Google Scholar 

  • 11.

    Wei Q, Ma LZ. Biofilm matrix and its regulation in Pseudomonas aeruginosa. Int J Mol Sci. 2013;14:20983–1005.

    Article 

    Google Scholar 

  • 12.

    Tal R, Wong HC, Calhoon R, Gelfand D, Fear AL, Volman G, et al. Three cdg operons control cellular turnover of cyclic di-GMP in Acetobacter xylinum: genetic organization and occurrence of conserved domains in isoenzymes. J Bacteriol. 1998;180:4416–25.

    CAS 
    Article 

    Google Scholar 

  • 13.

    Chua SL, Liu Y, Li Y, Jun Ting H, Kohli GS, Cai Z, et al. Reduced Intracellular c-di-GMP content increases expression of quorum sensing-regulated genes in Pseudomonas aeruginosa. Front. Cell. Infect. Microbiol. 2017;7:451.

    Article 

    Google Scholar 

  • 14.

    Hengge R. Principles of c-di-GMP signalling in bacteria. Nat Rev Microbiol. 2009;7:263–73.

    CAS 
    Article 

    Google Scholar 

  • 15.

    Hickman JW, Tifrea DF, Harwood CS. A chemosensory system that regulates biofilm formation through modulation of cyclic diguanylate levels. Proc Natl Acad Sci USA. 2005;102:14422–7.

    CAS 
    Article 

    Google Scholar 

  • 16.

    Smith EE, Buckley DG, Wu Z, Saenphimmachak C, Hoffman LR, D’Argenio DA, et al. Genetic adaptation by Pseudomonas aeruginosa to the airways of cystic fibrosis patients. Proc Natl Acad Sci USA. 2006;103:8487–92.

    CAS 
    Article 

    Google Scholar 

  • 17.

    Chua SL, Ding Y, Liu Y, Cai Z, Zhou J, Swarup S, et al. Reactive oxygen species drive evolution of pro-biofilm variants in pathogens by modulating cyclic-di-GMP levels. Open Biol. 2016;6:160162.

    Article 

    Google Scholar 

  • 18.

    Seviour T, Hansen SH, Yang L, Yau YH, Wang VB, Stenvang MR, et al. Functional amyloids keep quorum-sensing molecules in check. J Biol Chem. 2015;290:6457–69.

    CAS 
    Article 

    Google Scholar 

  • 19.

    Ma L, Conover M, Lu H, Parsek MR, Bayles K, Wozniak DJ. Assembly and development of the Pseudomonas aeruginosa biofilm matrix. PLoS Pathog. 2009;5:e1000354.

    Article 

    Google Scholar 

  • 20.

    Whitehead NA, Barnard AML, Slater H, Simpson NJL, Salmond GPC. Quorum-sensing in Gram-negative bacteria. FEMS Microbiol Rev. 2001;25:365–404.

    CAS 
    Article 

    Google Scholar 

  • 21.

    Zhang Y, Chou JH, Bradley J, Bargmann CI, Zinn K. The Caenorhabditis elegans seven-transmembrane protein ODR-10 functions as an odorant receptor in mammalian cells. Proc Natl Acad Sci USA. 1997;94:12162–7.

    CAS 
    Article 

    Google Scholar 

  • 22.

    Sengupta P, Chou JH, Bargmann CI. odr-10 encodes a seven transmembrane domain olfactory receptor required for responses to the odorant diacetyl. Cell. 1996;84:899–909.

    CAS 
    Article 

    Google Scholar 

  • 23.

    Cezairliyan B, Vinayavekhin N, Grenfell-Lee D, Yuen GJ, Saghatelian A, Ausubel FM. Identification of Pseudomonas aeruginosa phenazines that kill Caenorhabditis elegans. PLoS Pathog. 2013;9:e1003101.

    CAS 
    Article 

    Google Scholar 

  • 24.

    Gallagher LA, Manoil C. Pseudomonas aeruginosa PAO1 kills Caenorhabditis elegans by cyanide poisoning. J Bacteriol. 2001;183:6207–14.

    CAS 
    Article 

    Google Scholar 

  • 25.

    Lewenza S, Charron-Mazenod L, Giroux L, Zamponi AD. Feeding behaviour of Caenorhabditis elegans is an indicator of Pseudomonas aeruginosa PAO1 virulence. PeerJ. 2014;2:e521–e.

    Article 

    Google Scholar 

  • 26.

    Tan MW, Mahajan-Miklos S, Ausubel FM. Killing of Caenorhabditis elegans by Pseudomonas aeruginosa used to model mammalian bacterial pathogenesis. Proc Natl Acad Sci USA. 1999;96:715–20.

    CAS 
    Article 

    Google Scholar 

  • 27.

    Tehseen M, Liao C, Dacres H, Dumancic M, Trowell S, Anderson A. Oligomerisation of C. elegans olfactory receptors, ODR-10 and STR-112, in yeast. PLoS ONE. 2014;9:e108680.

    Article 

    Google Scholar 

  • 28.

    Sooknanan J, Bhatt B, Comissiong DMG. A modified predator-prey model for the interaction of police and gangs. R Soc Open Sci. 2016;3:160083.

    CAS 
    Article 

    Google Scholar 

  • 29.

    Arciola CR, Campoccia D, Montanaro L. Implant infections: adhesion, biofilm formation and immune evasion. Nat Rev Microbiol. 2018;16:397–409.

    CAS 
    Article 

    Google Scholar 

  • 30.

    Deng Y, Liu SY, Chua SL, Khoo BL. The effects of biofilms on tumor progression in a 3D cancer-biofilm microfluidic model. Biosens Bioelectron. 2021;180:113113.

    CAS 
    Article 

    Google Scholar 

  • 31.

    Kwok T-Y, Ma Y, Chua SL. Biofilm dispersal induced by mechanical cutting leads to heightened foodborne pathogen dissemination. Food Microbiol. 2022;102:103914.

    Article 

    Google Scholar 

  • 32.

    Yu M, Chua SL. Demolishing the great wall of biofilms in gram-negative bacteria: to disrupt or disperse? Medicinal Res Rev. 2020;40:1103–16.

    CAS 
    Article 

    Google Scholar 

  • 33.

    Chua SL, Liu Y, Yam JKH, Chen Y, Vejborg RM, Tan BGC, et al. Dispersed cells represent a distinct stage in the transition from bacterial biofilm to planktonic lifestyles. Nat Commun. 2014;5:4462.

    CAS 
    Article 

    Google Scholar 

  • 34.

    Liu SY, Leung MM-L, Fang JK-H, Chua SL. Engineering a microbial ‘trap and release’ mechanism for microplastics removal. Chem Eng J. 2021;404:127079.

    CAS 
    Article 

    Google Scholar 


  • Source: Ecology - nature.com

    Implications of H2/CO2 disequilibrium for life on Enceladus

    Intestinal ion regulation exhibits a daily rhythm in Gymnocypris przewalskii exposed to high saline and alkaline water