in

Biological manganese-dependent sulfide oxidation impacts elemental gradients in redox-stratified systems: indications from the Black Sea water column

[adace-ad id="91168"]
  • 1.

    Dellwig O, Schnetger B, Brumsack H-J, Grossart H-P, Umlauf L. Dissolved reactive manganese at pelagic redoxclines (part II): hydrodynamic conditions for accumulation. J Mar Syst. 2012;90:31–41.

    Google Scholar 

  • 2.

    Taylor GT, Iabichella M, Ho T, Scranton MI, Thunell RC, Muller-Karger F, et al. Chemoautotrophy in the redox transition zone of the Cariaco Basin: a significant midwater source of organic carbon production. Limnol Oceanogr. 2001;46:148–63.

    CAS 

    Google Scholar 

  • 3.

    Zopfi J, Ferdelman TG, Jørgensen BB, Teske A, Thamdrup B. Influence of water column dynamics on sulfide oxidation and other major biogeochemical processes in the chemocline of Mariager Fjord (Denmark). Mar Chem. 2001;74:29–51.

    CAS 

    Google Scholar 

  • 4.

    Trefry JH, Presley BJ, Keeney-Kennicutt WL, Trocine RP. Distribution and chemistry of manganese, iron, and suspended particulates in Orca Basin. Geo-Mar Lett. 1984;4:125–30.

    Google Scholar 

  • 5.

    Dahl TW, Anbar AD, Gordon GW, Rosing MT, Frei R, Canfield DE. The behavior of molybdenum and its isotopes across the chemocline and in the sediments of sulfidic Lake Cadagno, Switzerland. Geochim Cosmochim Acta. 2010;74:144–63.

    CAS 

    Google Scholar 

  • 6.

    Özsoy E, Ünlüata Ü. Oceanography of the Black Sea: a review of some recent results. Earth-Sci Rev. 1997;42:231–72.

    Google Scholar 

  • 7.

    Wegwerth A, Eckert S, Dellwig O, Schnetger B, Severmann S, Weyer S, et al. Redox evolution during Eemian and Holocene sapropel formation in the Black Sea. Palaeogeogr Palaeoclimatol Palaeoecol. 2018;489:249–60.

    Google Scholar 

  • 8.

    Murray JW, Jannasch HW, Honjo S, Anderson RF, Reeburgh WS, Top Z, et al. Unexpected changes in the oxic/anoxic interface in the Black Sea. Nature. 1989;338:411–3.

    CAS 

    Google Scholar 

  • 9.

    Schulz-Vogt HN, Pollehne F, Jürgens K, Arz HW, Bahlo R, Dellwig O, et al. Effect of large magnetotactic bacteria with polyphosphate inclusions on the phosphate profile of the suboxic zone in the Black Sea. ISME J. 2019;13:1198–208.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 10.

    Dellwig O, Wegwerth A, Schnetger B, Schulz H, Arz HW. Dissimilar behaviors of the geochemical twins W and Mo in hypoxic-euxinic marine basins. Earth-Sci Rev. 2019;193:1–23.

    CAS 

    Google Scholar 

  • 11.

    Stanev EV, Poulain PM, Grayek S, Johnson KS, Claustre H, Murray JW. Understanding the dynamics of the oxic-anoxic interface in the Black Sea. Geophys Res Lett. 2018;45:864–71.

    CAS 

    Google Scholar 

  • 12.

    Trouwborst RE. Soluble Mn(III) in suboxic zones. Science. 2006;313:1955–7.

    CAS 
    PubMed 

    Google Scholar 

  • 13.

    Vliet DM, Meijenfeldt FAB, Dutilh BE, Villanueva L, Sinninghe Damsté JS, Stams AJM, et al. The bacterial sulfur cycle in expanding dysoxic and euxinic marine waters. Environ Microbiol. 2021;23:2834–57.

    PubMed 

    Google Scholar 

  • 14.

    Konovalov SK, Luther GW, Friederich GE, Nuzzio DB, Tebo BM, Murray JW, et al. Lateral injection of oxygen with the Bosporus plume-fingers of oxidizing potential in the Black Sea. Limnol Oceanogr. 2003;48:2369–76.

    CAS 

    Google Scholar 

  • 15.

    Lewis BL, Landing WM. The biogeochemistry of manganese and iron in the Black Sea. Deep Sea Res A Oceanogr Res Pap. 1991;38:S773–S803.

    Google Scholar 

  • 16.

    Yakushev EV, Pollehne F, Jost G, Kuznetsov I, Schneider B, Umlauf L. Analysis of the water column oxic/anoxic interface in the Black and Baltic seas with a numerical model. Mar Chem. 2007;107:388–410.

    CAS 

    Google Scholar 

  • 17.

    Gregg MC, Yakushev E. Surface ventilation of the Black Sea’s cold intermediate layer in the middle of the western gyre. Geophys Res Lett. 2005;32:1–4.

    Google Scholar 

  • 18.

    Schnetger B, Dellwig O. Dissolved reactive manganese at pelagic redoxclines (part I): a method for determination based on field experiments. J Mar Syst. 2012;90:23–30.

    Google Scholar 

  • 19.

    Tebo BM, Bargar JR, Clement BG, Dick GJ, Murray KJ, Parker D, et al. Biogenic manganese oxides: Properties and mechanisms of formation. Annu Rev Earth Planet Sci. 2004;32:287–328.

    CAS 

    Google Scholar 

  • 20.

    Glockzin M, Pollehne F, Dellwig O. Stationary sinking velocity of authigenic manganese oxides at pelagic redoxclines. Mar Chem. 2014;160:67–74.

    CAS 

    Google Scholar 

  • 21.

    Dellwig O, Leipe T, März C, Glockzin M, Pollehne F, Schnetger B, et al. A new particulate Mn-Fe-P-shuttle at the redoxcline of anoxic basins. Geochim Cosmochim Acta. 2010;74:7100–15.

    CAS 

    Google Scholar 

  • 22.

    Burdige DJ, Nealson KH. Chemical and microbiological studies of sulfide-mediated manganese reduction. Geomicrobiol J. 1986;4:361–87.

    CAS 

    Google Scholar 

  • 23.

    Yao W, Millero FJ. The rate of sulfide oxidation by δMnO2 in seawater. Geochim Cosmochim Acta. 1993;57:3359–65.

    CAS 

    Google Scholar 

  • 24.

    Parks DH, Chuvochina M, Waite DW, Rinke C, Skarshewski A, Chaumeil PA, et al. A standardized bacterial taxonomy based on genome phylogeny substantially revises the tree of life. Nat Biotechnol. 2018;36:996.

    CAS 
    PubMed 

    Google Scholar 

  • 25.

    Henkel JV, Dellwig O, Pollehne F, Herlemann DPR, Leipe T, Schulz-Vogt HN. A bacterial isolate from the Black Sea oxidizes sulfide with manganese(IV) oxide. Proc Natl Acad Sci USA. 2019;116:12153–5.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 26.

    Henkel JV, Vogts A, Werner J, Neu TR, Spröer C, Bunk B, et al. Candidatus Sulfurimonas marisnigri sp. nov. and Candidatus Sulfurimonas baltica sp. nov., thiotrophic manganese oxide reducing chemolithoautotrophs of the class Campylobacteria isolated from the pelagic redoxclines of the Black Sea and the Baltic Sea. Syst Appl Microbiol. 2021;44:1–11.

  • 27.

    Grote J, Jost G, Labrenz M, Herndl GJ, Jürgens K. Epsilonproteobacteria represent the major portion of chemoautotrophic bacteria in sulfidic waters of pelagic redoxclines of the Baltic and Black Seas. Appl Environ Microbiol. 2008;74:7546–51.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 28.

    Pernthaler A, Pernthaler J, Amann R. Fluorescence in situ hybridization and catalyzed reporter deposition for the identification of marine bacteria. Appl Environ Microbiol. 2002;68:3094–101.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 29.

    Sekar R, Pernthaler A, Pernthaler J, Warnecke F, Posch T, Amann R. An improved protocol for quantification of freshwater Actinobacteria by fluorescence in situ hybridization. Appl Environ Microbiol. 2003;69:2928–35.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 30.

    Grote J, Labrenz M, Pfeiffer B, Jost G, Jürgens K. Quantitative distributions of Epsilonproteobacteria and a Sulfurimonas subgroup in pelagic redoxclines of the central Baltic Sea. Appl Environ Microbiol. 2007;73:7155–61.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 31.

    Daims H, Bruhl A, Amann R, Schleifer K, Wagner M. The domain-specific probe EUB338 is insufficient for the detection of all bacteria: development and evaluation of a more comprehensive probe set. Syst Appl Microbiol. 1999;22:434–44.

    CAS 
    PubMed 

    Google Scholar 

  • 32.

    Wallner G, Amann R, Beisker W. Optimizing fluorescent in situ hybridization with rRNA-targeted oligonucleotide probes for flow cytometric identification of microorganisms. Cytometry. 1993;11:136–43.

    Google Scholar 

  • 33.

    Glöckner FO, Yilmaz P, Quast C, Gerken J, Beccati A, Ciuprina A, et al. 25 years of serving the community with ribosomal RNA gene reference databases and tools. J Biotechnol. 2017;261:169–76.

    PubMed 

    Google Scholar 

  • 34.

    Quast C, Pruesse E, Yilmaz P, Gerken J, Schweer T, Yarza P, et al. The SILVA ribosomal RNA gene database project: improved data processing and web-based tools. Nucleic Acids Res. 2013;41:590–6.

    Google Scholar 

  • 35.

    Konstantinidis KT, Tiedje JM. Towards a genome-based taxonomy for prokaryotes. J Bacteriol. 2005;187:6258–64.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 36.

    Buchfink B, Reuter K, Drost H-G. Sensitive protein alignments at tree-of-life scale using DIAMOND. Nat Methods. 2021;18:366–8.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 37.

    Von Meijenfeldt FAB, Arkhipova K, Cambuy DD, Coutinho FH, Dutilh BE. Robust taxonomic classification of uncharted microbial sequences and bins with CAT and BAT. Genome Biol. 2019;20:1–14.

    Google Scholar 

  • 38.

    Schulz HD. Conceptual models and computer models. In: Schulz HD, Zabel M, editors. Marine geochemistry. Springer: Berlin, Heidelberg; 2006. p. 513–47.

  • 39.

    Diepenbroek M, Glöckner FO, Grobe P, Güntsch A, Huber R, König-Ries B, et al. Towards an integrated biodiversity and ecological research data management and archiving platform: the German federation for the curation of biological data (GFBio). In: Plödereder E, Grunske L, Schneider E, Ull D, editors. Informatik 2014. Bonn: Gesellschaft für Informatik e.V.; 2014.p. 1711–21.

  • 40.

    Yilmaz P, Kottmann R, Field D, Knight R, Cole JR, Amaral-Zettler L, et al. Minimum information about a marker gene sequence (MIMARKS) and minimum information about any (x) sequence (MIxS) specifications. Nat Biotechnol. 2011;29:415–20.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 41.

    Revsbech NP, Thamdrup B, Dalsgaard T, Canfield DE. Construction of STOX oxygen sensors and their application for determination of O2 concentrations in oxygen minimum zones. Methods Enzymol. 2011;486:325–41.

    CAS 
    PubMed 

    Google Scholar 

  • 42.

    Dahl C. A biochemical view on the biological sulfur cycle. In: Environmental technologies to treat sulphur pollution: principles and engineering. IWA Publishing: London; 2020;2:55–96.

  • 43.

    Murray JW, Yakushev EV. Past and present water column anoxia. Past and present water column anoxia. Dordrecht: Springer Netherlands; 2006.

  • 44.

    Schulz HD. Quantification of early diagenesis: dissolved constituents in pore water and signals in the solid phase. In: Schulz HD, Zabel M, editors. Marine geochemistry. Berlin/Heidelberg: Springer-Verlag; 2006. p. 73–124.

  • 45.

    Tebo BM. Manganese(II) oxidation in the suboxic zone of the Black Sea. Deep Res A. 1991;38:883–905.

    Google Scholar 

  • 46.

    Konovalov S, Samodurov A, Oguz T, Ivanov L. Parameterization of iron and manganese cycling in the Black Sea suboxic and anoxic environment. Deep Res Part I Oceanogr Res Pap. 2004;51:2027–45.

    CAS 

    Google Scholar 

  • 47.

    Lahme S, Callbeck CM, Eland LE, Wipat A, Enning D, Head IM, et al. Comparison of sulfide-oxidizing Sulfurimonas strains reveals a new mode of thiosulfate formation in subsurface environments. Environ Microbiol. 2020;22:1784–1800.

    CAS 
    PubMed 

    Google Scholar 

  • 48.

    Grote J, Schott T, Bruckner CG, Glockner FO, Jost G, Teeling H, et al. Genome and physiology of a model Epsilonproteobacterium responsible for sulfide detoxification in marine oxygen depletion zones. Proc Natl Acad Sci USA. 2012;109:506–10.

    CAS 
    PubMed 

    Google Scholar 

  • 49.

    Sievert SM, Scott KM, Klotz MG, Chain PSG, Hauser LJ, Hemp J, et al. Genome of the Epsilonproteobacterial chemolithoautotroph Sulfurimonas denitrificans. Appl Environ Microbiol. 2008;74:1145–56.

    CAS 
    PubMed 

    Google Scholar 

  • 50.

    Friedrich CG, Bardischewsky F, Rother D, Quentmeier A, Fischer J. Prokaryotic sulfur oxidation. Curr Opin Microbiol. 2005;8:253–9.

    CAS 
    PubMed 

    Google Scholar 

  • 51.

    Götz F, Pjevac P, Markert S, McNichol J, Becher D, Schweder T, et al. Transcriptomic and proteomic insight into the mechanism of cyclooctasulfur- versus thiosulfate-oxidation by the chemolithoautotroph Sulfurimonas denitrificans. Environ Microbiol. 2019;21:244–58.

    PubMed 

    Google Scholar 

  • 52.

    Pjevac P, Meier DV, Markert S, Hentschker C, Schweder T, Becher D, et al. Metaproteogenomic profiling of microbial communities colonizing actively venting hydrothermal chimneys. Front Microbiol. 2018;9:1–12.

    Google Scholar 

  • 53.

    Meier DV, Pjevac P, Bach W, Hourdez S, Girguis PR, Vidoudez C, et al. Niche partitioning of diverse sulfur-oxidizing bacteria at hydrothermal vents. ISME J. 2017;11:1545–58.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 54.

    Wang S, Jiang L, Hu Q, Liu X, Yang S, Shao Z. Elemental sulfur reduction by a deep‐sea hydrothermal vent Campylobacterium Sulfurimonas sp. NW10. Environ Microbiol. 2021;23:965–79.

    CAS 
    PubMed 

    Google Scholar 

  • 55.

    Yao W, Millero FH. Oxidation of hydrogen sulfide by Mn(IV) and Fe(III) (hydr)oxides in seawater. Mar Chem. 1996;52:1–16.

    CAS 

    Google Scholar 

  • 56.

    Herszage J, dos Santos Afonso M. Mechanism of hydrogen sulfide oxidation by manganese(IV) oxide in aqueous solutions. Langmuir. 2003;19:9684–92.

    CAS 

    Google Scholar 

  • 57.

    Glazer BT, Luther GW, Konovalov SK, Friederich GE, Nuzzio DB, Trouwborst RE, et al. Documenting the suboxic zone of the Black Sea via high-resolution real-time redox profiling. Deep Res II Top Stud Oceanogr. 2006;53:1740–55.

    Google Scholar 

  • 58.

    Jørgensen BB, Fossing H, Wirsen CO, Jannasch HW. Sulfide oxidation in the anoxic Black Sea chemocline. Deep Sea Res A Oceanogr Res Pap. 1991;38:1083–103.

    Google Scholar 

  • 59.

    Yiǧiterhan O, Murray JW. Trace metal composition of particulate matter of the Danube River and Turkish rivers draining into the Black Sea. Mar Chem. 2008;111:63–76.

    Google Scholar 

  • 60.

    Brewer PG, Spencer DW. Distribution of some trace elements in Black Sea and their flux between dissolved and particulate phases: water. In: The Black Sea–Geology, Chemistry, and Biology. AAPG Special Volumes. AAPG; 1974;137–43.

  • 61.

    Fuchsman CA, Kirkpatrick JB, Brazelton WJ, Murray JW, Staley JT. Metabolic strategies of free-living and aggregate-associated bacterial communities inferred from biologic and chemical profiles in the Black Sea suboxic zone. FEMS Microbiol Ecol. 2011;78:586–603.

    CAS 
    PubMed 

    Google Scholar 

  • 62.

    Kelly DP. Biochemistry of the chemolithotrophic oxidation of inorganic sulphur. Philos Trans R Soc Lond B Biol Sci. 1982;298:499–528.

    CAS 
    PubMed 

    Google Scholar 

  • 63.

    Kirkpatrick JB, Fuchsman CA, Yakushev EV, Egorov AV, Staley JT, Murray JW. Dark N2 fixation: nifH expression in the redoxcline of the Black Sea. Aquat Micro Ecol. 2018;82:43–58.

    Google Scholar 

  • 64.

    Glaubitz S, Kießlich K, Meeske C, Labrenz M, Jürgens K. SUP05 Dominates the gammaproteobacterial sulfur oxidizer assemblages in pelagic redoxclines of the central baltic and black seas. Appl Environ Microbiol. 2013;79:2767–76.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 65.

    Shah V, Chang BX, Morris RM. Cultivation of a chemoautotroph from the SUP05 clade of marine bacteria that produces nitrite and consumes ammonium. ISME J. 2017;11:263–71.

    CAS 
    PubMed 

    Google Scholar 

  • 66.

    Rogge A, Vogts A, Voss M, Jürgens K, Jost G, Labrenz M. Success of chemolithoautotrophic SUP05 and Sulfurimonas GD17 cells in pelagic Baltic Sea redox zones is facilitated by their lifestyles as K- and r -strategists. Environ Microbiol. 2017;19:2495–506.

    CAS 
    PubMed 

    Google Scholar 

  • 67.

    Overmann J, Cypionka H, Pfennig N. An extremely low-light-adapted phototrophic sulfur bacterium from the Black Sea. Limnol Oceanogr. 1992;37:150–5.

    CAS 

    Google Scholar 

  • 68.

    Jensen MM, Kuypers MMM, Lavik G, Thamdrup B. Rates and regulation of anaerobic ammonium oxidation and denitrification in the Black Sea. Limnol Oceanogr. 2008;53:23–36.

    CAS 

    Google Scholar 

  • 69.

    Hannig M, Lavik G, Kuypers MMM, Woebken D, Martens-Habbena W, Jürgens K. Shift from denitrification to anammox after inflow events in the central Baltic Sea. Limnol Oceanogr. 2007;52:1336–45.

    CAS 

    Google Scholar 

  • 70.

    Engström P, Dalsgaard T, Hulth S, Aller RC. Anaerobic ammonium oxidation by nitrite (anammox): Implications for N2 production in coastal marine sediments. Geochim Cosmochim Acta. 2005;69:2057–65.

    Google Scholar 

  • 71.

    Dapena-Mora A, Fernández I, Campos JL, Mosquera-Corral A, Méndez R, Jetten MSM. Evaluation of activity and inhibition effects on Anammox process by batch tests based on the nitrogen gas production. Enzym Micro Technol. 2007;40:859–65.

    CAS 

    Google Scholar 

  • 72.

    Havig JR, McCormick ML, Hamilton TL, Kump LR. The behavior of biologically important trace elements across the oxic/euxinic transition of meromictic Fayetteville Green Lake, New York, USA. Geochim Cosmochim Acta. 2015;165:389–406.

    CAS 

    Google Scholar 

  • 73.

    Jürgens K, Taylor GT. Microbial ecology and biogeochemistry of oxygen-deficient water columns. Microbial Ecology of the Ocean, 3rd ed. Hoboken: Wiley; 2018. p. 231–88.

  • 74.

    Jost G, Martens-Habbena W, Pollehne F, Schnetger B, Labrenz M. Anaerobic sulfur oxidation in the absence of nitrate dominates microbial chemoautotrophy beneath the pelagic chemocline of the eastern Gotland Basin, Baltic Sea. FEMS Microbiol Ecol. 2010;71:226–36.

    CAS 
    PubMed 

    Google Scholar 

  • 75.

    Aller RC, Rude PD. Complete oxidation of solid phase sulfides by manganese and bacteria in anoxic marine sediments. Geochim Cosmochim Acta. 1988;52:751–65.

    CAS 

    Google Scholar 

  • 76.

    King GM. Effects of added manganic and ferric oxides on sulfate reduction and sulfide oxidation in intertidal sediments. FEMS Microbiol Ecol. 1990;73:131–8.

    CAS 

    Google Scholar 


  • Source: Ecology - nature.com

    Investors awaken to the risks of climate change

    Study on landscape evaluation and optimization strategy of Central Park in Qingkou Town