Narayan, S. et al. The effectiveness, costs and coastal protection benefits of natural and nature-based defences. PLoS ONE 11, e0154735 (2016).
Google Scholar
Schürch, M., Rapaglia, J., Liebetrau, V., Vafeidis, A. T. & Reise, K. Salt marsh accretion and storm tide variation: An example from a barrier island in the North Sea. ESCO 35, 486–500 (2012).
de Groot, A. V., Veeneklaas, R. M., Kuijper, D. P. & Bakker, J. P. Spatial patterns in accretion on barrier-island salt marshes. Geomorphology 134, 280–296 (2011).
Google Scholar
Temmerman, S. et al. Ecosystem-based coastal defence in the face of global change. Nature 504, 79–83 (2013).
Google Scholar
Barbier, E. B. et al. Coastal ecosystem: Based management with nonlinear ecologial functions and values. Science 319, 321–323 (2008).
Google Scholar
Schoonees, T. et al. Hard structures for coastal protection, towards greener designs. Estuaries Coasts 21, 755 (2019).
IPCC. Summary for Policymakers. in: Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change (2021).
Lenssen, G. M., Lamers, J., Stroetenga, M. & Rozema, J. CO2 and biosphere 379–390 (Kluwer Academic Publishers, 1993).
Google Scholar
Cherry, J. A., McKee, K. L. & Grace, J. B. Elevated CO2 enhances biological contributions to elevation change in coastal wetlands by offsetting stressors associated with sea-level rise. J. Ecol. 97, 67–77 (2009).
Google Scholar
Arp, W. J., Drake, B. G., Pockman, W. T., Curtis, P. S. & Whigham, D. F. CO2 and Biosphere 133–143 (Kluwer Academic Publishers, 1993).
Google Scholar
Cao, H. et al. Wave effects on seedling establishment of three pioneer marsh species: survival, morphology and biomechanics. Ann. Bot. 125, 345–352 (2020).
Google Scholar
Puijalon, S. et al. Plant resistance to mechanical stress: Evidence of an avoidance-tolerance trade-off. New Phytol. 191, 1141–1149 (2011).
Google Scholar
Niklas, K. Plant Biomechanics: An Engineering Approach to Plant Form and Function (University of Chicago Press, 1992).
Silinski, A. et al. Effects of wind waves versus ship waves on tidal marsh plants: A flume study on different life stages of Scirpus maritimus. PLoS ONE 10, e0118687 (2015).
Google Scholar
Rupprecht, F., Möller, I., Evans, B. R., Spencer, T. & Jensen, K. Biophysical properties of salt marsh canopies: Quantifying plant stem flexibility and above ground biomass. Coast. Eng. 100, 48–57 (2015).
Google Scholar
Paul, M. & de los Santos, C. B. Variation in flexural, morphological, and biochemical leaf properties of eelgrass (Zostera marina) along the European Atlantic climate regions. Mar. Biol. 166, 2187 (2019).
Google Scholar
Carus, J., Paul, M. & Schröder, B. Vegetation as self-adaptive coastal protection: Reduction of current velocity and morphologic plasticity of a brackish marsh pioneer. Ecol. Evol. 6, 1579–1589 (2016).
Google Scholar
Callaghan, F. M. et al. A submersible device for measuring drag forces on aquatic plants and other organisms. NZ J. Mar. Freshw. Res. 41, 119–127 (2007).
Google Scholar
Paul, M., Bouma, T. J. & Amos, C. L. Wave attenuation by submerged vegetation: combining the effect of organism traits and tidal current. Mar. Ecol. Prog. Ser. 444, 31–41 (2012).
Google Scholar
Taphorn, M., Villanueva, R., Paul, M., Visscher, J. H. & Schlurmann, T. Flow field and wake structure characteristics imposed by single seagrass blade surrogates. J. Ecohydraul. 1, 1–13 (2021).
Lightbody, A. F. & Nepf, H. M. Prediction of velocity profiles and longitudinal dispersion in emergent salt marsh vegetation. Limnol. Oceangr 51, 218–228 (2006).
Google Scholar
Kobayashi, N., Raichle, A. W. & Asano, T. Wave attenuation by vegetation. J. Waterway Port Coastal Ocean Eng. 119, 30–48 (1993).
Google Scholar
Villanueva, R., Thom, M., Visscher, J. H., Paul, M. & Schlurmann, T. Wake length of an artificial seagrass meadow: A study of shelter and its feasibility for restoration. J. Ecohydraul. 1, 1–15 (2021).
Paul, M. & Amos, C. L. Spatial and seasonal variation in wave attenuation over Zostera noltii. J. Geophys. Res. 116, C08019 (2011).
Google Scholar
Marjoribanks, T. I. & Paul, M. Modelling flow-induced reconfiguration of variable rigidity aquatic vegetation. J. Hydraul. Res. 1, 1–16 (2021).
Schulze, D., Rupprecht, F., Nolte, S. & Jensen, K. Seasonal and spatial within-marsh differences of biophysical plant properties: Implications for wave attenuation capacity of salt marshes. Aquat. Sci. 81, 82 (2019).
Google Scholar
Gillis, L. G. et al. Living on the edge: How traits of ecosystem engineers drive bio-physical interactions at coastal wetland edges. Adv. Water Resour. 166, 104257 (2022).
Google Scholar
Zhao, H. & Chen, Q. Modeling attenuation of storm surge over deformable vegetation: methodology and verification. J. Eng. Mech. 140, 4014090 (2014).
Möller, I. et al. Wave attenuation over coastal salt marshes under storm surge conditions. Nat. Geosci 7, 727–731 (2014).
Google Scholar
Maza, M. et al. Large-scale 3-D experiments of wave and current interaction with real vegetation. Part 2. Experimental analysis. Coast. Eng. 106, 73–86 (2015).
Google Scholar
Gray, A. J. & Mogg, R. J. Climate impacts on pioneer saltmarsh plants. Clim. Res. 18, 105–112 (2001).
Google Scholar
Novaes, E., Kirst, M., Chiang, V., Winter-Sederoff, H. & Sederoff, R. Lignin and biomass: A negative correlation for wood formation and lignin content in trees. Plant Physiol. 154, 555–561 (2010).
Google Scholar
Redfield, A. C. Development of a New England salt marsh. Ecol. Monogr. 42, 201–237 (1972).
Google Scholar
Kirwan, M. L. et al. Limits on the adaptability of coastal marshes to rising sea level. Geophys. Res. Lett. 37, 1–10 (2010).
Google Scholar
Idier, D., Dumas, F. & Muller, H. Tide-surge interaction in the English Channel. Nat. Hazards Earth Syst. Sci. 12, 3709–3718 (2012).
Google Scholar
Weisse, R., von Storch, H., Niemeyer, H. D. & Knaack, H. Changing North Sea storm surge climate: An increasing hazard?. Ocean Coast. Manag. 68, 58–68 (2012).
Google Scholar
Idier, D., Paris, F., Le Cozannet, G., Boulahya, F. & Dumas, F. Sea-level rise impacts on the tides of the European Shelf. Cont. Shelf Res. 137, 56–71 (2017).
Google Scholar
Marcos, M., Calafat, F. M., Berihuete, Á. & Dangendorf, S. Long-term variations in global sea level extremes. J. Geophys. Res. Oceans 120, 8115–8134 (2015).
Google Scholar
Dangendorf, S., Mudersbach, C., Jensen, J., Anette, G. & Heinrich, H. Seasonal to decadal forcing of high water level percentiles in the German Bight throughout the last century. Ocean Dyn. 46, 277 (2013).
de Winter, R. C., Sterl, A. & Ruessink, B. G. Wind extremes in the North Sea Basin under climate change: An ensemble study of 12 CMIP5 GCMs. J. Geophys. Res. Atmos. 118, 1601–1612 (2013).
Google Scholar
Arns, A. et al. Sea-level rise induced amplification of coastal protection design heights. Sci. Rep. 7, 40171 (2017).
Google Scholar
Pansch, A., Winde, V., Asmus, R. & Asmus, H. Tidal benthic mesocosms simulating future climate change scenarios in the field of marine ecology. Limnol. Oceanogr. Methods 14, 257–267 (2016).
Google Scholar
Meehl, G. A. et al. Climate Change 2007: The Physical Science Basis: Summary for Policymakers. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change (Cambridge University Press, 2007).
Miler, O., Albayrak, I., Nikora, V. I. & O’Hare, M. T. Biomechanical properties of aquatic plants and their effects on plant–flow interactions in streams and rivers. Aquat. Sci. 74, 31–44 (2012).
Google Scholar
Source: Ecology - nature.com