Chin, A. Z. et al. Malaria elimination in Malaysia and the rising threat of Plasmodium knowlesi. J. Physiol. Anthropol. 39, 36 (2020).
Google Scholar
Vythilingam, I., Wong, M. L. & Wan-Yussof, W. S. Current status of Plasmodium knowlesi vectors: A public health concern?. Parasitol 145, 32–40 (2018).
Google Scholar
World Health Organization. Global technical strategy for malaria 2016–2030. World Health Org (2015).
Sallum, M. A. M. et al. Vector competence, vectorial capacity of Nyssorhynchus darlingi and the basic reproduction number of Plasmodium vivax in agricultural settlements in the Amazonian region of Brazil. Malar. J. 18, 117 (2019).
Google Scholar
Garrett-Jones, C. The human blood index of malaria vectors in relation to epidemiological assessment. Bull. World Health Org. 30, 241 (1964).
Google Scholar
De Oliveira, C. D., Tadei, W. P., Abdalla, F. C., Paolucci Pimenta, P. F. & Marinotti, O. Multiple blood meals in Anopheles darlingi (Diptera: Culicidae). J. Vector Ecol. 37, 351–358 (2012).
Google Scholar
Subbarao, S. K. Anopheline Species Complexes in Southeast Asia (WHO Technical Publication, 1998).
Hansen, I. A., Attardo, G. M., Rodriguez, S. D. & Drake, L. L. Four-way regulation of mosquito yolk protein precursor genes by juvenile hormone-, ecdysone-, nutrient-, and insulin-like peptide signaling pathways. Front. Physiol. 5, 103 (2014).
Google Scholar
Bashar, K., Tuno, N., Ahmed, T. & Howlader, A. Blood-feeding patterns of Anopheles mosquitoes in a malaria-endemic area of Bangladesh. Parasites Vectors 5, 39 (2012).
Google Scholar
Escobar, D. et al. Blood meal sources of Anopheles spp. in malaria endemic areas of Honduras. Insects 11, 1–12 (2020).
Boreham, P. F. L. & Garrett-Jones, C. Prevalence of mixed blood meals and double feeding in a malaria vector (Anopheles sacharovi Favre). Bull. World Health Organ. 48, 605 (1973).
Google Scholar
Kent, R. J. & Norris, D. E. Identification of mammalian blood meals in mosquitoes by a multiplexed polymerase chain reaction targeting cytochrome B. Am. J. Trop. Med. Hyg. 73, 336–342 (2005).
Google Scholar
Brown, R., Hing, C. T., Fornace, K. & Ferguson, H. M. Evaluation of resting traps to examine the behaviour and ecology of mosquito vectors in an area of rapidly changing land use in Sabah, Malaysian Borneo. Parasites Vectors 11, 1–15 (2018).
Brant, H. L. et al. Vertical stratification of adult mosquitoes (Diptera: Culicidae) within a tropical rainforest in Sabah, Malaysia. Malar. J. 15, 370 (2016).
Google Scholar
Young, K. I. et al. Identification of mosquito bloodmeals collected in diverse habitats in Malaysian borneo using COI barcoding. Trop. Med. Infect. Dis. 5, 51 (2020).
Google Scholar
Rohani, A. et al. Comparative human landing catch and CDC light trap in mosquito sampling in knowlesi malaria endemic areas in Peninsula Malaysia. Adv. Entomol. 04, 1–10 (2016).
Jeyaprakasam, N. K. et al. Evaluation of Mosquito Magnet and other collection tools for Anopheles mosquito vectors of simian malaria. Parasites Vectors 14, 1–13 (2021).
Detinova, T. S. Age-grouping methods in Diptera of medical importance with special reference to some vectors of malaria. Monogr. Ser. World Health Organ. 47, 13–191 (1962).
Google Scholar
Brugman, V. A. et al. Blood-feeding patterns of native mosquitoes and insights into their potential role as pathogen vectors in the Thames estuary region of the United Kingdom. Parasites Vectors 10, 1–12 (2017).
WHO. Training module on malaria control: Malaria entomology and vector control. Guide for participants. World Health Organisation (2013).
Derek Charlwood, J. et al. ‘Nature or nurture’: Survival rate, oviposition interval, and possible gonotrophic discordance among South East Asian anophelines. Malar. J. 15, 356 (2016).
Google Scholar
Scott, T. W. et al. Detection of multiple blood feeding in Aedes aegypti (Diptera: Culicidae) during a single gonotrophic cycle using a histologic technique. J. Med. Entomol. 30, 94–99 (1993).
Google Scholar
Ramasamy, M. S., Srikrishnaraj, K. A., Hadjirin, N., Perera, S. & Ramasamy, R. Physiological aspects of multiple blood feeding in the malaria vector Anopheles tessellatus. J. Insect Physiol. 46, 1051–1059 (2000).
Google Scholar
Fernandes, L. & Briegel, H. Reproductive physiology of Anopheles gambiae and Anopheles atroparvus. J. Vector Ecol. 30, 11 (2005).
Google Scholar
Nirmala, X., Marinotti, O. & James, A. A. The accumulation of specific mRNAs following multiple blood meals in Anopheles gambiae. Insect Mol. Biol. 14, 95–103 (2005).
Google Scholar
Briegel, H. & Horler, E. Multiple blood meals as a reproductive strategy in Anopheles (Diptera: Culcidae). J. Med. Entomol. 30, 975–985 (1993).
Google Scholar
Klowden, M. J. & Lea, A. O. Effect of defensive host behavior on the blood meal size and feeding success of natural populations of mosquitoes (Diptera: Culicidae). J. Med. Entomol. 15, 514–517 (1979).
Google Scholar
Briegel, H. Fecundity, metabolism, and body size in Anopheles (Diptera: Culicidae), vectors of malaria. J. Med. Entomol. 27, 839–850 (1990).
Google Scholar
Service, M. W. Effects of wind on the behaviour and distribution of mosquitoes and blackflies. Int. J. Biometeorol. 24, 347–353 (1980).
Google Scholar
Rahman, W. A., Che’Rus, A. & Ahmad, A. H. Malaria and Anopheles mosquitos in Malaysia. Southeast Asian J. Trop. Med. Public Health 28, 599–605 (1997).
Google Scholar
Sandosham, A. A. & Thomas, V. Malariology: With Special Reference to Malaya (Singapore University Press, 1983).
Self, L.S. & De Datta, S.K. The impact of water management practices in rice production on mosquito vector propagation. In Vector-Borne Disease Control in Humans Through Rice Agroecosystem Management: Proceedings of the Workshop on Research and Training Needs in the Field of Integrated Vector-Borne Disease Control in Riceland Agroecosystems of Developing Countries. 67 (1988).
Gooding, R. H. Digestive processes of haematophagous insects I. A literature review. Quaest. Entomol. 8, 5–60 (1972).
Hocking, K. S. & Macinnes, D. G. Notes on the bionomics of Anopheles gambiae and A funestus in East Africa. Bull. Entomol. Res. 39, 453–465 (1948).
Google Scholar
Jiram, A. I. et al. Entomologic investigation of Plasmodium knowlesi vectors in Kuala Lipis, Pahang, Malaysia. Malar. J. 11, 1 (2012).
Suwonkerd, W. et al. Vector biology and malaria transmission in Southeast Asia. In: S. Manguin (Ed.), Anopheles Mosquitoes—New Insights into Malaria Vectors (IntechOpen, 2013).
Reid, J. A. Anopheline mosquitoes of Malaya and Borneo. Studies from the Institute for Medical Research, Malaysia. Anopheline mosquitoes Malaya Borneo. Stud. Inst. Med. Res. Malaysia 31, 520 (1968).
Vythilingam, I. et al. Plasmodium knowlesi malaria an emerging public health problem in Hulu Selangor, Selangor, Malaysia (2009–2013): Epidemiologic and entomologic analysis. Parasites Vectors 7, 1–14 (2014).
Garrett-Jones, C., Boreham, P. F. L. & Pant, C. P. Feeding habits of Anophelines (Diptera: Culicidae) in 1971–78, with reference to the human blood index: A review. Bull. Entomol. Res. 70, 165–185 (2017).
Lyimo, I. N. & Ferguson, H. M. Ecological and evolutionary determinants of host species choice in mosquito vectors. Trends Parasitol. 25, 189–196 (2009).
Google Scholar
Molaei, G., Andreadis, T. G., Armstrong, P. M. & Diuk-Wasser, M. Host-feeding patterns of potential mosquito vectors in Connecticut, USA: molecular analysis of bloodmeals from 23 species of Aedes, Anopheles, Culex, Coquillettidia, Psorophora, and Uranotaenia. J. Med. Entomol. 45, 1143–1151 (2008).
Google Scholar
Ang, J. X. et al. New vectors in northern Sarawak, Malaysian Borneo, for the zoonotic malaria parasite, Plasmodium knowlesi. Parasites Vectors 13, 472 (2020).
Google Scholar
Ang, J. X. et al. New vectors that are early feeders for Plasmodium knowlesi and other simian malaria parasites in Sarawak, Malaysian Borneo. Sci. Rep. 11, 7739 (2021).
Google Scholar
Stark, D. J. et al. Long-tailed macaque response to deforestation in a Plasmodium knowlesi-endemic area. EcoHealth 16, 638–646 (2019).
Google Scholar
Jeyaprakasam, N. K., Liew, J. W. K., Low, V. L., Wan-Sulaiman, W.-Y.Y. & Vythilingam, I. Plasmodium knowlesi infecting humans in Southeast Asia: What’s next?. PLoS Negl. Trop. Dis. 14, 1–16 (2020).
Amir, A., Sum, J. S., Lau, Y. L., Vythilingam, I. & Fong, M. Y. Colonization of Anopheles cracens: A malaria vector of emerging importance. Parasites Vectors 6, 2–5 (2013).
Andolina, C. et al. The suitability of laboratory-bred Anopheles cracens for the production of Plasmodium vivax sporozoites. Malar. J. 14, 312 (2015).
Google Scholar
Rund, S. S. C., O’Donnell, A. J., Gentile, J. E. & Reece, S. E. Daily rhythms in mosquitoes and their consequences for malaria transmission. Insects. 7, 14 (2016).
Google Scholar
Aviles, E. I., Rotenberry, R. D., Collins, C. M., Dotson, E. M. & Benedict, M. Q. Fluorescent markers rhodamine B and uranine for Anopheles gambiae adults and matings. Malar. J. 19, 1–9 (2020).
Alcaide, M. et al. Disentangling vector-borne transmission networks: A universal DNA barcoding method to identify vertebrate hosts from arthropod bloodmeals. PLoS ONE 4, e7092 (2009).
Google Scholar
Gunathilaka, N., Denipitiya, T., Hapugoda, M., Abeyewickreme, W. & Wickremasinghe, R. Determination of the foraging behaviour and blood meal source of malaria vector mosquitoes in Trincomalee district of Sri Lanka using a multiplex real time polymerase chain reaction assay. Malar. J. 15, 1–10 (2016).
Sallum, M. A. M., Peyton, E. L., Harrison, B. A. & Wilkerson, R. C. Revision of the Leucosphyrus group of Anopheles (Cellia) (Diptera, Culicidae). Rev. Bras. Entomol. 49, 1–152 (2005).
Sum, J. S. et al. Phylogenetic study of six species of Anopheles mosquitoes in Peninsular Malaysia based on inter-transcribed spacer region 2 (ITS2) of ribosomal DNA. Parasites Vectors 7, 309 (2014).
Google Scholar
Pappa, V., Reddy, M., Overgaard, H. J., Abaga, S. & Caccone, A. Short report: Estimation of the human blood index in malaria mosquito vectors in Equatorial Guinea after indoor antivector interventions. Am. J. Trop. Med. Hyg. 84, 298–301 (2011).
Google Scholar
Source: Ecology - nature.com