in

Blood meal analysis of Anopheles vectors of simian malaria based on laboratory and field studies

  • 1.

    Chin, A. Z. et al. Malaria elimination in Malaysia and the rising threat of Plasmodium knowlesi. J. Physiol. Anthropol. 39, 36 (2020).

    PubMed 
    PubMed Central 

    Google Scholar 

  • 2.

    Vythilingam, I., Wong, M. L. & Wan-Yussof, W. S. Current status of Plasmodium knowlesi vectors: A public health concern?. Parasitol 145, 32–40 (2018).

    CAS 

    Google Scholar 

  • 3.

    World Health Organization. Global technical strategy for malaria 2016–2030. World Health Org (2015).

  • 4.

    Sallum, M. A. M. et al. Vector competence, vectorial capacity of Nyssorhynchus darlingi and the basic reproduction number of Plasmodium vivax in agricultural settlements in the Amazonian region of Brazil. Malar. J. 18, 117 (2019).

    PubMed 
    PubMed Central 

    Google Scholar 

  • 5.

    Garrett-Jones, C. The human blood index of malaria vectors in relation to epidemiological assessment. Bull. World Health Org. 30, 241 (1964).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 6.

    De Oliveira, C. D., Tadei, W. P., Abdalla, F. C., Paolucci Pimenta, P. F. & Marinotti, O. Multiple blood meals in Anopheles darlingi (Diptera: Culicidae). J. Vector Ecol. 37, 351–358 (2012).

    PubMed 

    Google Scholar 

  • 7.

    Subbarao, S. K. Anopheline Species Complexes in Southeast Asia (WHO Technical Publication, 1998).

    Google Scholar 

  • 8.

    Hansen, I. A., Attardo, G. M., Rodriguez, S. D. & Drake, L. L. Four-way regulation of mosquito yolk protein precursor genes by juvenile hormone-, ecdysone-, nutrient-, and insulin-like peptide signaling pathways. Front. Physiol. 5, 103 (2014).

    PubMed 
    PubMed Central 

    Google Scholar 

  • 9.

    Bashar, K., Tuno, N., Ahmed, T. & Howlader, A. Blood-feeding patterns of Anopheles mosquitoes in a malaria-endemic area of Bangladesh. Parasites Vectors 5, 39 (2012).

    PubMed 
    PubMed Central 

    Google Scholar 

  • 10.

    Escobar, D. et al. Blood meal sources of Anopheles spp. in malaria endemic areas of Honduras. Insects 11, 1–12 (2020).

    Google Scholar 

  • 11.

    Boreham, P. F. L. & Garrett-Jones, C. Prevalence of mixed blood meals and double feeding in a malaria vector (Anopheles sacharovi Favre). Bull. World Health Organ. 48, 605 (1973).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 12.

    Kent, R. J. & Norris, D. E. Identification of mammalian blood meals in mosquitoes by a multiplexed polymerase chain reaction targeting cytochrome B. Am. J. Trop. Med. Hyg. 73, 336–342 (2005).

    CAS 
    PubMed 

    Google Scholar 

  • 13.

    Brown, R., Hing, C. T., Fornace, K. & Ferguson, H. M. Evaluation of resting traps to examine the behaviour and ecology of mosquito vectors in an area of rapidly changing land use in Sabah, Malaysian Borneo. Parasites Vectors 11, 1–15 (2018).

    Google Scholar 

  • 14.

    Brant, H. L. et al. Vertical stratification of adult mosquitoes (Diptera: Culicidae) within a tropical rainforest in Sabah, Malaysia. Malar. J. 15, 370 (2016).

    PubMed 
    PubMed Central 

    Google Scholar 

  • 15.

    Young, K. I. et al. Identification of mosquito bloodmeals collected in diverse habitats in Malaysian borneo using COI barcoding. Trop. Med. Infect. Dis. 5, 51 (2020).

    PubMed Central 

    Google Scholar 

  • 16.

    Rohani, A. et al. Comparative human landing catch and CDC light trap in mosquito sampling in knowlesi malaria endemic areas in Peninsula Malaysia. Adv. Entomol. 04, 1–10 (2016).

    Google Scholar 

  • 17.

    Jeyaprakasam, N. K. et al. Evaluation of Mosquito Magnet and other collection tools for Anopheles mosquito vectors of simian malaria. Parasites Vectors 14, 1–13 (2021).

    Google Scholar 

  • 18.

    Detinova, T. S. Age-grouping methods in Diptera of medical importance with special reference to some vectors of malaria. Monogr. Ser. World Health Organ. 47, 13–191 (1962).

    CAS 
    PubMed 

    Google Scholar 

  • 19.

    Brugman, V. A. et al. Blood-feeding patterns of native mosquitoes and insights into their potential role as pathogen vectors in the Thames estuary region of the United Kingdom. Parasites Vectors 10, 1–12 (2017).

    Google Scholar 

  • 20.

    WHO. Training module on malaria control: Malaria entomology and vector control. Guide for participants. World Health Organisation (2013).

  • 21.

    Derek Charlwood, J. et al. ‘Nature or nurture’: Survival rate, oviposition interval, and possible gonotrophic discordance among South East Asian anophelines. Malar. J. 15, 356 (2016).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 22.

    Scott, T. W. et al. Detection of multiple blood feeding in Aedes aegypti (Diptera: Culicidae) during a single gonotrophic cycle using a histologic technique. J. Med. Entomol. 30, 94–99 (1993).

    CAS 
    PubMed 

    Google Scholar 

  • 23.

    Ramasamy, M. S., Srikrishnaraj, K. A., Hadjirin, N., Perera, S. & Ramasamy, R. Physiological aspects of multiple blood feeding in the malaria vector Anopheles tessellatus. J. Insect Physiol. 46, 1051–1059 (2000).

    CAS 
    PubMed 

    Google Scholar 

  • 24.

    Fernandes, L. & Briegel, H. Reproductive physiology of Anopheles gambiae and Anopheles atroparvus. J. Vector Ecol. 30, 11 (2005).

    PubMed 

    Google Scholar 

  • 25.

    Nirmala, X., Marinotti, O. & James, A. A. The accumulation of specific mRNAs following multiple blood meals in Anopheles gambiae. Insect Mol. Biol. 14, 95–103 (2005).

    CAS 
    PubMed 

    Google Scholar 

  • 26.

    Briegel, H. & Horler, E. Multiple blood meals as a reproductive strategy in Anopheles (Diptera: Culcidae). J. Med. Entomol. 30, 975–985 (1993).

    CAS 
    PubMed 

    Google Scholar 

  • 27.

    Klowden, M. J. & Lea, A. O. Effect of defensive host behavior on the blood meal size and feeding success of natural populations of mosquitoes (Diptera: Culicidae). J. Med. Entomol. 15, 514–517 (1979).

    CAS 
    PubMed 

    Google Scholar 

  • 28.

    Briegel, H. Fecundity, metabolism, and body size in Anopheles (Diptera: Culicidae), vectors of malaria. J. Med. Entomol. 27, 839–850 (1990).

    CAS 
    PubMed 

    Google Scholar 

  • 29.

    Service, M. W. Effects of wind on the behaviour and distribution of mosquitoes and blackflies. Int. J. Biometeorol. 24, 347–353 (1980).

    ADS 

    Google Scholar 

  • 30.

    Rahman, W. A., Che’Rus, A. & Ahmad, A. H. Malaria and Anopheles mosquitos in Malaysia. Southeast Asian J. Trop. Med. Public Health 28, 599–605 (1997).

    CAS 
    PubMed 

    Google Scholar 

  • 31.

    Sandosham, A. A. & Thomas, V. Malariology: With Special Reference to Malaya (Singapore University Press, 1983).

    Google Scholar 

  • 32.

    Self, L.S. & De Datta, S.K. The impact of water management practices in rice production on mosquito vector propagation. In Vector-Borne Disease Control in Humans Through Rice Agroecosystem Management: Proceedings of the Workshop on Research and Training Needs in the Field of Integrated Vector-Borne Disease Control in Riceland Agroecosystems of Developing Countries. 67 (1988).

  • 33.

    Gooding, R. H. Digestive processes of haematophagous insects I. A literature review. Quaest. Entomol. 8, 5–60 (1972).

    Google Scholar 

  • 34.

    Hocking, K. S. & Macinnes, D. G. Notes on the bionomics of Anopheles gambiae and A funestus in East Africa. Bull. Entomol. Res. 39, 453–465 (1948).

    CAS 
    PubMed 

    Google Scholar 

  • 35.

    Jiram, A. I. et al. Entomologic investigation of Plasmodium knowlesi vectors in Kuala Lipis, Pahang, Malaysia. Malar. J. 11, 1 (2012).

    Google Scholar 

  • 36.

    Suwonkerd, W. et al. Vector biology and malaria transmission in Southeast Asia. In: S. Manguin (Ed.), Anopheles Mosquitoes—New Insights into Malaria Vectors (IntechOpen, 2013).

  • 37.

    Reid, J. A. Anopheline mosquitoes of Malaya and Borneo. Studies from the Institute for Medical Research, Malaysia. Anopheline mosquitoes Malaya Borneo. Stud. Inst. Med. Res. Malaysia 31, 520 (1968).

    Google Scholar 

  • 38.

    Vythilingam, I. et al. Plasmodium knowlesi malaria an emerging public health problem in Hulu Selangor, Selangor, Malaysia (2009–2013): Epidemiologic and entomologic analysis. Parasites Vectors 7, 1–14 (2014).

    Google Scholar 

  • 39.

    Garrett-Jones, C., Boreham, P. F. L. & Pant, C. P. Feeding habits of Anophelines (Diptera: Culicidae) in 1971–78, with reference to the human blood index: A review. Bull. Entomol. Res. 70, 165–185 (2017).

    Google Scholar 

  • 40.

    Lyimo, I. N. & Ferguson, H. M. Ecological and evolutionary determinants of host species choice in mosquito vectors. Trends Parasitol. 25, 189–196 (2009).

    PubMed 

    Google Scholar 

  • 41.

    Molaei, G., Andreadis, T. G., Armstrong, P. M. & Diuk-Wasser, M. Host-feeding patterns of potential mosquito vectors in Connecticut, USA: molecular analysis of bloodmeals from 23 species of Aedes, Anopheles, Culex, Coquillettidia, Psorophora, and Uranotaenia. J. Med. Entomol. 45, 1143–1151 (2008).

    CAS 
    PubMed 

    Google Scholar 

  • 42.

    Ang, J. X. et al. New vectors in northern Sarawak, Malaysian Borneo, for the zoonotic malaria parasite, Plasmodium knowlesi. Parasites Vectors 13, 472 (2020).

    PubMed 
    PubMed Central 

    Google Scholar 

  • 43.

    Ang, J. X. et al. New vectors that are early feeders for Plasmodium knowlesi and other simian malaria parasites in Sarawak, Malaysian Borneo. Sci. Rep. 11, 7739 (2021).

    ADS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 44.

    Stark, D. J. et al. Long-tailed macaque response to deforestation in a Plasmodium knowlesi-endemic area. EcoHealth 16, 638–646 (2019).

    PubMed 
    PubMed Central 

    Google Scholar 

  • 45.

    Jeyaprakasam, N. K., Liew, J. W. K., Low, V. L., Wan-Sulaiman, W.-Y.Y. & Vythilingam, I. Plasmodium knowlesi infecting humans in Southeast Asia: What’s next?. PLoS Negl. Trop. Dis. 14, 1–16 (2020).

    Google Scholar 

  • 46.

    Amir, A., Sum, J. S., Lau, Y. L., Vythilingam, I. & Fong, M. Y. Colonization of Anopheles cracens: A malaria vector of emerging importance. Parasites Vectors 6, 2–5 (2013).

    Google Scholar 

  • 47.

    Andolina, C. et al. The suitability of laboratory-bred Anopheles cracens for the production of Plasmodium vivax sporozoites. Malar. J. 14, 312 (2015).

    PubMed 
    PubMed Central 

    Google Scholar 

  • 48.

    Rund, S. S. C., O’Donnell, A. J., Gentile, J. E. & Reece, S. E. Daily rhythms in mosquitoes and their consequences for malaria transmission. Insects. 7, 14 (2016).

    PubMed Central 

    Google Scholar 

  • 49.

    Aviles, E. I., Rotenberry, R. D., Collins, C. M., Dotson, E. M. & Benedict, M. Q. Fluorescent markers rhodamine B and uranine for Anopheles gambiae adults and matings. Malar. J. 19, 1–9 (2020).

    Google Scholar 

  • 50.

    Alcaide, M. et al. Disentangling vector-borne transmission networks: A universal DNA barcoding method to identify vertebrate hosts from arthropod bloodmeals. PLoS ONE 4, e7092 (2009).

    ADS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 51.

    Gunathilaka, N., Denipitiya, T., Hapugoda, M., Abeyewickreme, W. & Wickremasinghe, R. Determination of the foraging behaviour and blood meal source of malaria vector mosquitoes in Trincomalee district of Sri Lanka using a multiplex real time polymerase chain reaction assay. Malar. J. 15, 1–10 (2016).

    Google Scholar 

  • 52.

    Sallum, M. A. M., Peyton, E. L., Harrison, B. A. & Wilkerson, R. C. Revision of the Leucosphyrus group of Anopheles (Cellia) (Diptera, Culicidae). Rev. Bras. Entomol. 49, 1–152 (2005).

    Google Scholar 

  • 53.

    Sum, J. S. et al. Phylogenetic study of six species of Anopheles mosquitoes in Peninsular Malaysia based on inter-transcribed spacer region 2 (ITS2) of ribosomal DNA. Parasites Vectors 7, 309 (2014).

    PubMed 
    PubMed Central 

    Google Scholar 

  • 54.

    Pappa, V., Reddy, M., Overgaard, H. J., Abaga, S. & Caccone, A. Short report: Estimation of the human blood index in malaria mosquito vectors in Equatorial Guinea after indoor antivector interventions. Am. J. Trop. Med. Hyg. 84, 298–301 (2011).

    PubMed 
    PubMed Central 

    Google Scholar 


  • Source: Ecology - nature.com

    Understanding air pollution from space

    A dirt cheap solution? Common clay materials may help curb methane emissions