in

Breeding and migration performance metrics highlight challenges for White-naped Cranes

[adace-ad id="91168"]
  • Darrah, S. E. et al. Improvements to the Wetland Extent Trends (WET) index as a tool for monitoring natural and human-made wetlands. Ecol. Ind. 99, 294–298 (2019).

    Google Scholar 

  • Gardner, R.C., & Finlayson, C., (eds) Global Wetland Outlook: State of the World’s Wetlands and Their Services to People. (Ramsar Convention Secretariat, 2018).

  • Tao, S. et al. Rapid loss of lakes on the Mongolian Plateau. Proc. Natl. Acad. Sci. 112(7), 2281–2286 (2015).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Davidson, N. Wetland losses and the status of wetland-dependent species. in The wetland book II: distribution, description, and conservation 369–381 (Springer, 2018).

  • Xu, Y. et al. Loss of functional connectivity in migration networks induces population decline in migratory birds. Ecol. Appl. 29(7), e10960 (2019).

    Google Scholar 

  • Wang, X. et al. Effects of anthropogenic landscapes on population maintenance of waterbirds. Conserv. Biol. https://doi.org/10.1111/cobi.13808 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Ma, Z., Cai, Y., Li, B. & Chen, J. Managing wetland habitats for waterbirds: An international perspective. Wetlands 30(1), 15–27 (2010).

    CAS 

    Google Scholar 

  • Rönkä, M. T., Saari, C. L. V., Lehikoinen, E. A., Suomela, J., Häkkilä, K. (eds) Environmental changes and population trends of breeding waterfowl in northern Baltic Sea. in Annales Zoologici Fennici JSTOR (2005).

  • Pöysä, H. & Paasivaara, A. Shifts in fine-scale distribution and breeding success of boreal waterbirds along gradients in ice-out timing and habitat structure. Freshw. Biol. 66(11), 2038–2050 (2021).

    Google Scholar 

  • Borgo, J. S. & Conover, M. R. Visual and olfactory concealment of duck nests: Influence on nest site selection and success. Hum. Wildl. Interact. 10(1), 110–121 (2016).

    Google Scholar 

  • Batbayar, N., Takekawa, J. Y., Natsagdorj, T., Spragens, K. A. & Xiao, X. Site selection and nest survival of the bar-headed goose (Anser indicus) on the Mongolian Plateau. Waterbirds Int. J. Waterbird Biol. 37(4), 381–393 (2014).

    Google Scholar 

  • Syroechkovsky, E. V., Litvin K. E., Gurtovaya E. N. Nesting ecology of Bewick’s Swans on Vaygach Island, Russia. Waterbirds 221–6 (2002).

  • Meijer, T. & Drent, R. Re-examination of the capital and income dichotomy in breeding birds. Ibis 141(3), 399–414 (1999).

    Google Scholar 

  • Rothenbach, C. A. & Kelly, J. P. The parental dilemma under variable predation pressure: Adaptive variation in nest attendance by great egrets. Condor 114(1), 90–99 (2012).

    Google Scholar 

  • Zhang, L., An, B., Shu, M. & Yang, X. Nest-site selection, reproductive ecology and shifts within core-use areas of black-necked cranes at the northern limit of the Tibetan Plateau. PeerJ 5(1), e2939 (2017).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Newton, I. The Migration Ecology of Birds (Elsevier, 2010).

    Google Scholar 

  • Donnelly, J. P. et al. Migration efficiency sustains connectivity across agroecological networks supporting sandhill crane migration. Ecosphere 12(6), e03543 (2021).

    Google Scholar 

  • Barzen, J. A. & Serie, J. R. Nutrient reserve dynamics of breeding canvasbacks. Auk 107(1), 75–85 (1990).

    Google Scholar 

  • Burnham, J. W. et al. Novel foraging by wintering Siberian cranes leucogeranus leucogeranus at China’s Poyang lake indicates broader changes in the ecosystem and raises new challenges for a critically endangered species. Bird Conserv. Int. 27, 204–223 (2017).

    Google Scholar 

  • Krapu, G. L., Iverson, G. C., Reinecke, K. J. & Boise, C. M. Fat deposition and usage by arctic-nesting sandhill cranes during spring. Auk 102(2), 362–368 (1985).

    Google Scholar 

  • Tøttrup, A. P. et al. Avian migrants adjust migration in response to environmental conditions en route. Biol. Lett. 4(6), 685–688 (2008).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Sorte, F. A. L. et al. The role of atmospheric conditions in the seasonal dynamics of North American migration flyways. J. Biogeogr. 41(9), 1685–1696 (2014).

    Google Scholar 

  • Marra, P. P., Francis, C. M., Mulvihill, R. S. & Moore, F. R. The influence of climate on the timing and rate of spring bird migration. Oecologia 142(2), 307–315 (2005).

    ADS 
    PubMed 

    Google Scholar 

  • Studds, C. E. & Marra, P. P. Rainfall-induced changes in food availability modify the spring departure programme of a migratory bird. Proc. R. Soc. B Biol. Sci. 278(1723), 3437–3443 (2011).

    Google Scholar 

  • Saino, N. et al. Ecological conditions during winter predict arrival date at the breeding quarters in a trans-Saharan migratory bird. Ecol. Lett. 7(1), 21–25 (2004).

    Google Scholar 

  • Barzen, JA. Chapter 15 – Ecological Implications of Habitat Use by Reintroduced and Remnant Whooping Crane Populations. In: Nyhus PJ, French JB, Converse SJ, Austin JE, Delap Jh (eds.), Whooping Cranes: Biology and Conservation. (Academic Press, New York, 2019).

  • Norris, D. R., Marra, P. P., Kyser, T. K., Sherry, T. W. & Ratcliffe, L. M. Tropical winter habitat limits reproductive success on the temperate breeding grounds in a migratory bird. Proc. R. Soc. B Biol. Sci. 271(1534), 59–64 (2004).

    Google Scholar 

  • Norris, D. R. & Taylor, C. M. Predicting the consequences of carry-over effects for migratory populations. Biol. Let. 2(1), 148–151 (2006).

    Google Scholar 

  • Newton, I. Population Limitation in Birds (Academic press, 1998).

    Google Scholar 

  • Altwegg, R. & Anderson, M. D. Rainfall in arid zones: Possible effects of climate change on the population ecology of blue cranes. Funct. Ecol. 23(5), 1014–1021 (2009).

    Google Scholar 

  • Layton-Matthews, K., Hansen, B. B., Grøtan, V., Fuglei, E. & Loonen, M. J. J. E. Contrasting consequences of climate change for migratory geese: Predation, density dependence and carryover effects offset benefits of high-arctic warming. Glob. Chang. Biol. 26(2), 642–657 (2020).

    ADS 
    PubMed 

    Google Scholar 

  • Madsen, J. & Fox, A. D. Impacts of hunting disturbance on waterbirds-a review. Wildl. Biol. 1(4), 193–207 (1995).

    Google Scholar 

  • Minias, P. Reproduction and survival in the city: Which fitness components drive urban colonization in a reed-nesting waterbird?. Curr. Zool. 62(2), 79–87 (2016).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Cheng, Y., Fiedler, W., Wikelski, M. & Flack, A. “Closer-to-home” strategy benefits juvenile survival in a long-distance migratory bird. Ecol. Evol. 9, 8945–8952 (2019).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Sargeant, A. B. & Raveling, D. G. Mortality during the breeding season. In Ecology and Management of Breeding Waterfowl (eds Batt, B. D. J. et al.) 396–422 (University of Minnesota Press, 1992).

    Google Scholar 

  • IUCN. The IUCN Red List of Threatened Species. http://www.iucnredlist.org Downloaded on 22 November 2021. Version 2021–2 (2021).

  • Mudrik, E. A. et al. Gene pool homogeneity of western and eastern populations of the white-naped crane antigone vipio in different flyways. Russ. J. Genet. 58(5), 566–575 (2022).

    CAS 

    Google Scholar 

  • Wang, W., Fraser, J. D. & Chen, J. Distribution and long-term population trends of wintering waterbirds in Poyang lake China. Wetlands 39(S1), 125–135 (2019).

    Google Scholar 

  • Wang, W., Fraser, J. D. & Chen, J. Wintering waterbirds in the middle and lower Yangtze river floodplain: Changes in abundance and distribution. Bird Conserv. Int. 27(2), 167–186 (2017).

    CAS 

    Google Scholar 

  • Gilbert, M., Buuveibaatar, B., Fine, A. E., Jambal, L. & Strindberg, S. Declining breeding populations of white-naped cranes in eastern Mongolia, a ten-year update. Bird Conserv. Int. 26(04), 490–504 (2016).

    Google Scholar 

  • Mirande, C.M., Harris J.T. Crane Conservation Strategy. in International Crane Foundation (Baraboo, Wisconsin, USA, 2019).

  • Bouchard, F. et al. Paleolimnology of thermokarst lakes: A window into permafrost landscape evolution. Arct. Sci. 3, 91–117 (2016).

    Google Scholar 

  • Fernández-Tizón, M., Emmenegger, T., Perner, J. & Hahn, S. Arthropod biomass increase in spring correlates with NDVI in grassland habitat. Sci. Nat. 107(5), 42 (2020).

    Google Scholar 

  • Dong, J. et al. Mapping paddy rice planting area in northeastern Asia with landsat 8 images, phenology-based algorithm and google earth engine. Remote Sens. Environ. 185, 142–154 (2016).

    ADS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Pekel, J.-F., Cottam, A., Gorelick, N. & Belward, A. S. High-resolution mapping of global surface water and its long-term changes. Nature 540(7633), 418–422 (2016).

    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Hersbach, H. et al. The ERA5 global reanalysis. Q. J. R. Meteorol. Soc. 146(730), 1999–2049 (2020).

    ADS 

    Google Scholar 

  • Bivand, R., Rundel, C. Rgeos: Interface to geometry engine-open source (GEOS). R package version 03–26. (2017).

  • Zuur, A. F., Ieno, E. N. & Elphick, C. S. A protocol for data exploration to avoid common statistical problems. Methods Ecol. Evol. 1(1), 3–14 (2010).

    Google Scholar 

  • Dormann, C. F. et al. Collinearity: A review of methods to deal with it and a simulation study evaluating their performance. Ecography 36(1), 27–46 (2013).

    Google Scholar 

  • Barton, K., Barton, M. K. Package ‘MuMIn’. R package version. 1(6), (2019).

  • Anderson, D. & Burnham, K. Model selection and multi-model inference. Second NY Springer-Verlag 2004(63), 10 (2020).

    Google Scholar 

  • Signer, J., Fieberg, J. & Avgar, T. Animal movement tools (amt): R package for managing tracking data and conducting habitat selection analyses. Ecol. Evol. 9(2), 880–890 (2019).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Batbayar, N. et al. Combining tracking and remote sensing to identify critical year-round site, habitat use and migratory connectivity of a threatened waterbird species. Remote Sens. 13(20), 4049 (2021).

    ADS 

    Google Scholar 

  • Lang, X. et al. Luan river upper reaches: The important stopover site of the white-naped crane (Grus vipio) western population. Biodivers. Sci. 28(10), 1213 (2020).

    Google Scholar 

  • Jia, Y. et al. Shifting of the migration route of white-naped crane (Antigone vipio) due to wetland loss in China. Remote Sens. 13(15), 2984 (2021).

    ADS 
    CAS 

    Google Scholar 

  • Lloyd, C. T. et al. Global spatio-temporally harmonised datasets for producing high-resolution gridded population distribution datasets. Big Earth Data 3(2), 108–139 (2019).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Kéry, M. & Schaub, M. Bayesian Population Analysis Using WinBUGS: A Hierarchical Perspective (Academic Press, 2011).

    Google Scholar 

  • Lê, S., Josse, J. & Husson, F. FactoMineR: An R package for multivariate analysis. J. Stat. Softw. 25(1), 1–18 (2008).

    Google Scholar 

  • Hastie, T. J. & Tibshirani, R. J. Generalized Additive Model (Routledge, 2017).

    MATH 

    Google Scholar 

  • Fair, J. M. & Jones, J. Guidelines to the Use of Wild Birds in Research (Ornithological council, 2010).

    Google Scholar 

  • RStudio Team RStudio. Integrated Development Environment for R (Studio, PBC, 2022).

    Google Scholar 

  • Higuchi, H. et al. Using a remote technology in conservation: Satellite tracking white-naped cranes in Russia and Asia. Conserv. Biol. 18(1), 136–147 (2004).

    Google Scholar 

  • Weller, M. W. Wetland Birds: Habitat Resources and Conservation Implications (University Press, Cambridge, 1999).

    Google Scholar 

  • Vandandorj, S., Gantsetseg, B. & Boldgiv, B. Spatial and temporal variability in vegetation cover of Mongolia and its implications. J. Arid Land 7(4), 450–461 (2015).

    Google Scholar 

  • Bradter, U. T. E., Gombobaatar, S., Uuganbayar, C., Grazia, T. E. & Exo, K.-M. Reproductive performance and nest-site selection of white-naped cranes grus vipio in the Ulz river valley, north-eastern Mongolia. Bird Conserv. Int. 15(4), 313–326 (2005).

    Google Scholar 

  • Bradter, U., Gombobaatar, S., Uuganbayar, C., Grazia, T. E. & Exo, K. M. Time budgets and habitat use of white-naped cranes grus vipio in the Ulz river valley, northeastern Mongolia during the breeding season. Bird Conserv. Int. 17(3), 259–271 (2007).

    Google Scholar 

  • Zheng, Y. et al. Dynamic changes and driving factors of wetlands in inner Mongolia plateau China. PLoS ONE 14(8), e0221177 (2019).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Linscott, J. A. & Senner, N. R. Beyond refueling: Investigating the diversity of functions of migratory stopover events. Ornithol. Appl. 123, duaa074 (2021).

    Google Scholar 

  • Xu, Y., Kieboom, M., van Lammeren, R. J. A., Si, Y. & de Boer, W. F. Indicators of site loss from a migration network: Anthropogenic factors influence waterfowl movement patterns at stopover sites. Global Ecol. Conserv. 25, e01435 (2021).

    Google Scholar 

  • Piersma, T. et al. Simultaneous declines in summer survival of three shorebird species signals a flyway at risk. J. Appl. Ecol. 53(2), 479–490 (2016).

    Google Scholar 

  • Wilson, S., Gil-Weir, K. C., Clark, R. G., Robertson, G. J. & Bidwell, M. T. Integrated population modeling to assess demographic variation and contributions to population growth for endangered whooping cranes. Biol. Conserv. 197, 1–7 (2016).

    Google Scholar 

  • Wheeler, M. E., Barzen, J. A., Crimmins, S. M. & Deelen, T. R. V. Effects of territorial status and life history on sandhill crane (Antigone canadensis) population dynamics in south-central Wisconsin, USA. Can. J. Zool. 97(2), 112–120 (2019).

    Google Scholar 

  • Gerber, B. D. & Kendall, W. L. Considering transient population dynamics in the conservation of slow life-history species: An application to the sandhill crane. Biol. Conserv. 200, 228–239 (2016).

    Google Scholar 

  • Servanty, S., Converse, S. J. & Bailey, L. L. Demography of a reintroduced population: Moving toward management models for an endangered species, the whooping crane. Ecol. Appl. 24(5), 927–937 (2014).

    PubMed 

    Google Scholar 

  • Xu, W. et al. Hidden loss of wetlands in China. Curr. Biol. 29(18), 3065–71.e2 (2019).

    CAS 
    PubMed 

    Google Scholar 

  • Niu, Z. et al. Mapping wetland changes in China between 1978 and 2008. Chin. Sci. Bull. 57(22), 2813–2823 (2012).

    Google Scholar 

  • Austin, J., Morrison, K. & Harris, J. Cranes and Agriculture: A Global Guide for Sharing the Landscape (International Crane Foundation, Baraboo, 2018).

    Google Scholar 

  • Lee, S. D., Jabłoński, P. G. & Higuchi, H. Winter foraging of threatened cranes in the demilitarized zone of Korea: Behavioral evidence for the conservation importance of unplowed rice fields. Biol. Conserv. 138(1), 286–289 (2007).

    Google Scholar 

  • Nilsson, L., Bunnefeld, N., Persson, J., Žydelis, R. & Månsson, J. Conservation success or increased crop damage risk? The Natura 2000 network for a thriving migratory and protected bird. Biol. Conserv. 236, 1–7 (2019).

    Google Scholar 

  • Mukherjee, A., Borad, C. K. & Parasharya, B. M. Breeding performance of the Indian sarus crane in the agricultural landscape of western India. Biol. Conserv. 105(2), 263–269 (2002).

    Google Scholar 

  • Gopi Sundar, K. S. Are rice paddies suboptimal breeding habitat for sarus cranes in Uttar Pradesh, India?. Condor 111(4), 611–623 (2009).

    Google Scholar 

  • Pekarsky, S., Schiffner, I., Markin, Y. & Nathan, R. Using movement ecology to evaluate the effectiveness of multiple human-wildlife conflict management practices. Biol. Conserv. 262, 109306 (2021).

    Google Scholar 

  • Hemminger, K., König, H., Månsson, J., Bellingrath-Kimura, S.-D. & Nilsson, L. Winners and losers of land use change: A systematic review of interactions between the world’s crane species (Gruidae) and the agricultural sector. Ecol. Evol. 12(3), e8719 (2022).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Amano, T. Conserving bird species in Japanese farmland: Past achievements and future challenges. Biol. Conserv. 142(9), 1913–1921 (2009).

    Google Scholar 

  • Okuya, K. et al. Isolation and characterization of influenza A viruses from environmental water at an overwintering site of migratory birds in Japan. Adv. Virol. 160(12), 3037–3052 (2015).

    CAS 

    Google Scholar 

  • Wille, M. & Barr, I. G. Resurgence of avian influenza virus. Science 376(6592), 459–460 (2022).

    ADS 
    CAS 
    PubMed 

    Google Scholar 


  • Source: Ecology - nature.com

    Presence of algal symbionts affects denitrifying bacterial communities in the sea anemone Aiptasia coral model

    South African Lagerstätte reveals middle Permian Gondwanan lakeshore ecosystem in exquisite detail