in

South African Lagerstätte reveals middle Permian Gondwanan lakeshore ecosystem in exquisite detail

[adace-ad id="91168"]
  • Lucas, S. G. Permian tetrapod extinction events. Earth Sci. Rev. 170, 31–60 (2017).

    Google Scholar 

  • Rampino, M. R. & Shen, S.-Z. The end-Guadalupian (259.8 Ma) biodiversity crisis: the sixth major mass extinction? Hist. Biol. 33, 716–722 (2019).

    Google Scholar 

  • Day, M. O. & Rubidge, B. S. The late capitanian mass extinction of terrestrial vertebrates in the Karoo Basin of South Africa. Front. Earth Sci. 9, 631198 (2021).

    Google Scholar 

  • Bordy, E. M. & Paiva, F. Stratigraphic architecture of the karoo river channels at the end-capitanian. Front. Earth Sci. 8, 521766 (2021).

    Google Scholar 

  • Erwin, D. H., Bowring, S. A. & Yugan, J. In Catastrophic events and mass extinctions: impacts and beyond (eds. Koeberl, C. & MacLeod, K. G.) 363–383 (Geological Society of America, 2002).

  • Fielding, C. R. et al. Age and pattern of the southern high-latitude continental end-Permian extinction constrained by multiproxy analysis. Nat. Commun. 10, 385 (2019).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Viglietti, P. A. et al. Evidence from South Africa for a protracted end-Permian extinction on land. Proc. Natl Acad. Sci. USA 118, e2017045118 (2021).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Rubidge, B. S. Did mammals originate in Africa? South African fossils and the Russian connection. Syd. Haughton Meml. Lect. 4, 1–14 (1995).

    Google Scholar 

  • Day, M. O. & Rubidge, B. S. A brief lithostratigraphic review of the Abrahamskraal and Koonap formations of the Beaufort Group, South Africa: towards a basin-wide stratigraphic scheme for the Middle Permian Karoo. J. Afr. Earth Sci. 100, 227–242 (2014).

    Google Scholar 

  • Day, M., Ramezani, J., Frazer, R. & Rubidge, B. U-Pb zircon age constraints on the vertebrate assemblages and palaeomagnetic record of the Guadalupian Abrahamskraal Formation, Karoo Basin, South Africa. J. Afr. Earth Sci. 186, 104435 (2022).

    CAS 

    Google Scholar 

  • Koch, N. M., Garwood, R. & Parry, L. Fossils improve phylogenetic analyses of morphological characters. Proc. R. Soc. B Biol. Sci. 288, 1–8 (2021).

    Google Scholar 

  • McLoughlin, S. Glossopteris: insights into the architecture and relationships of an iconic Permian Gondwanan plant. J. Bot. Soc. Bengal 65, 93–106 (2011).

    Google Scholar 

  • Slater, B. J., McLoughlin, S. & Hilton, J. A high-latitude Gondwanan lagerstätte: the Permian permineralised peat biota of the Prince Charles Mountains, Antarctica. Gondwana Res. 27, 1446–1473 (2015).

    Google Scholar 

  • Plumstead, E. P. Three thousand million years of plant life in Africa. (Geological Society of South Africa, 1969).

  • Lacey, W. S., van Dijk, D. E. & Gordon-Gray, K. D. Fossil plants from the Upper Permian in the Mooi River district of Natal, South Africa. Ann. Natal. Mus. 22, 349–420 (1975).

    Google Scholar 

  • Anderson, J. M. & Anderson, H. M. Palaeoflora of Southern Africa. Prodomus of South African megafloras. Devonian to Lower Cretaceous. (Balkema, 1985).

  • Bordy, E. M. & Prevec, R. Sedimentology, palaeontology and palaeo-environments of the Middle (?) to Upper Permian Emakwezini Formation (Karoo Supergroup, South Africa). South Afr. J. Geol. 111, 429–458 (2008).

  • Prevec, R. et al. Portrait of a Gondwanan ecosystem: a new late Permian fossil locality from KwaZulu-Natal, South Africa. Rev. Palaeobot. Palynol. 156, 454–493 (2009).

    Google Scholar 

  • Mcloughlin, S. & Prevec, R. The architecture of Permian glossopterid ovuliferous reproductive organs. Alcheringa Australas. J. Palaeontol. 43, 480–510 (2019).

    Google Scholar 

  • McLoughlin, S. & Prevec, R. The reproductive biology of glossopterid gymnosperms—a review. Rev. Palaeobot. Palynol. 295, 104527 (2021).

    Google Scholar 

  • Riek, E. F. New Upper Permian insects from Natal, South Africa. Ann. Natal. Mus. 22, 755–789 (1976).

    Google Scholar 

  • Riek, E. F. Fossil insects from the Middle Ecca (Lower Permian) of southern Africa. Palaeontol. Afr. 19, 145–148 (1976).

    Google Scholar 

  • Riek, E. F. An entomobryid collembolan (Hexapoda: Collembola) from the Lower Permian of Southern Africa. Palaeontol. Afr. 19, 141–143 (1976).

    Google Scholar 

  • McLachlan, I. R. & Anderson, A. M. Fossil insect wings from the Early Permian White Band Formation, South Africa. Palaeontol. Afr. 20, 83–86 (1977).

    Google Scholar 

  • Pinto, I. D. & Pinto De Ornellas, L. New fossil insects from the White Band Formation (Permian), South Africa. Pesqui. Zool. 10, 96–104 (1978).

    Google Scholar 

  • van Dijk, D. E. & Geertsema, H. Permian insects from the Beaufort Group of Natal, South Africa. Ann. Natal. Mus. 40, 137–171 (1999).

    Google Scholar 

  • Geertsema, H., van Dijk, D. E. & van den Heever, A. J. Palaeozoic insects of southern Africa: a review. Palaeontol. Afr. 38, 19–25 (2002).

    Google Scholar 

  • Rubidge, B. S., Erwin, D. H., Ramezani, J., Bowring, S. A. & de Klerk, W. J. High-precision temporal calibration of Late Permian vertebrate biostratigraphy: U-Pb zircon constraints from the Karoo Supergroup, South Africa. Geology 41, 363–366 (2013).

    CAS 

    Google Scholar 

  • Mcloughlin, S., Prevec, R. & Slater, B. J. Arthropod interactions with the Permian Glossopteris flora. J. Palaeosciences 70, 43–133 (2021).

    Google Scholar 

  • Shcherbakov, D. E. On Permian and Triassic insect faunas in relation to biogeography and the Permian-Triassic crisis. Paleontol. J. 42, 15–31 (2008).

    Google Scholar 

  • Nel, A. et al. The earliest known holometabolous insects. Nature 503, 257–261 (2013).

    CAS 
    PubMed 

    Google Scholar 

  • Nicholson, D. B., Mayhew, P. J. & Ross, A. J. Changes to the fossil record of insects through fifteen years of discovery. PLoS ONE 10, 1421–1435 (2015).

    Google Scholar 

  • Glenister, B. F., Wardlaw, B. R., Lambert, L. L., Spinosa, C. & Bowring, S. A. Proposal of Guadalupian and component Roadian. Wordian Capitanian Stages Int. Stand. middle Permian Ser. Permophiles 34, 3–11 (1999).

    Google Scholar 

  • Allison, P. A. Konservat-Lagerstätten: cause and classification. Paleobiology 14, 331–344 (1988).

    Google Scholar 

  • Grimaldi, D. & Engel, M. S. Evolution of the Insects. (Cambridge University Press, 2005).

  • Tian, Q. et al. Experimental investigation of insect deposition in lentic environments and implications for formation of Konservat Lagerstätten. Palaeontology 63, 565–578 (2020).

    Google Scholar 

  • McCurry, M. R. et al. A Lagerstätte from Australia provides insight into the nature of Miocene mesic ecosystems. Sci. Adv. 8, 1–11 (2022).

    Google Scholar 

  • Beckemeyer, R. J. & Hall, J. D. The entomofauna of the Lower Permian fossil insect beds of Kansas and Oklahoma, USA. Afr. Invertebr. 48, 17 (2007).

    Google Scholar 

  • Jell, P. A. The fossil insects of Australia. Mem. Qld. Mus. 50, 1–124 (2004).

    Google Scholar 

  • Wickens, H., de, V. & Cole, D. I. Lithostratigraphy of the Skoorsteenberg Formation (Ecca Group, Karoo Supergroup), South Africa. South Afr. J. Geol. 120, 433–446 (2017).

    Google Scholar 

  • Rubidge, B. S., Hancox, P. J. & Catuneaunu, O. Sequence analysis of the Ecca–Beaufort contact in the southern Karoo of South Africa. South Afr. J. Geol. 103, 81–96 (2000).

    Google Scholar 

  • Lanci, L., Tohver, E., Wilson, A. & Flint, S. Upper Permian magnetic stratigraphy of the lower Beaufort Group, Karoo Basin. Earth Planet. Sci. Lett. 375, 123–134 (2013).

    CAS 

    Google Scholar 

  • Belica, M. E. et al. Refining the chronostratigraphy of the Karoo Basin, South Africa: magnetostratigraphic constraints support an early Permian age for the Ecca Group. Geophys. J. Int. 211, 1354–1374 (2017).

    CAS 

    Google Scholar 

  • Rubidge, B. S. & Day, M. O. Biostratigraphy of the Eodicynodon Assemblage Zone (Beaufort Group, Karoo Supergroup), South Africa. South Afr. J. Geol. 123, 141–148 (2020).

    Google Scholar 

  • Nel, A., Garrouste, R. & Prevec, R. The first Permian Gondwanan damselfly-like Protozygoptera (Insecta, Odonatoptera). Hist. Biol. https://doi.org/10.1080/08912963.2022.2067996 (2022).

  • Cawood, R. et al. The first ‘Grylloblattida’ of the family Liomopteridae from the Middle Permian in the Onder Karoo, South Africa (Insecta: Polyneoptera). Comptes Rendus Palevol. https://doi.org/10.5852/cr-palevol2022v21a22 (2022).

  • Surange, K. R. & Chandra, S. Morphology of the gymnospermous fructifications of the Glossopteris flora and their relationships. Palaeontogr. B 149, 153–180 (1975).

    Google Scholar 

  • White, M. E. Reproductive structures of the Glossopteridales in the plant fossil collection of the Australian Museum. Rec. Aust. Mus. 31, 473–504 (1978).

    Google Scholar 

  • Nishida, H., Pigg, K. B. & DeVore, M. L. In Transformative Paleobotany, Ch. 8 (eds. Krings, M., Harper, C. J., Cúneo, N. R. & Rothwell, G. W.) 145–154 (Academic Press, 2018).

  • McLoughlin, S. New records of Bergiopteris and glossopterid fructifications from the Permian of Western Australia and Queensland. Alcheringa Australas. J. Palaeontol. 19, 175–192 (1995).

    Google Scholar 

  • McLoughlin, S. In Gondwana Eight (eds. Findlay, R. H., Unrug, R., Banks, M. R. & Veevers, J. J.) 253–264 (Balkema, 1993).

  • Nishida, H., Pigg, K. B., Kudo, K. & Rigby, J. F. New evidence of the reproductive organs of Glossopteris based on permineralized fossils from Queensland, Australia. II: pollen-bearing organ Ediea gen. nov. J. Plant Res. 127, 233–240 (2014).

    PubMed 

    Google Scholar 

  • Tomescu, A. M. F., Bomfleur, B., Bippus, A. C. & Savoretti, A. In Transformative Paleobotany (eds. Krings, M., Harper, C. J., Cuneo, N. R. & Rothwell, G. W.) 375–416 (Elsevier Academic Press, 2018).

  • Bomfleur, B. et al. Diverse bryophyte mesofossils from the Triassic of Antarctica. Lethaia 47, 120–132 (2014).

    Google Scholar 

  • Nel, A., Bechly, G., Prokop, J., Béthoux, O. & Fleck, G. Systematics and evolution of Paleozoic and Mesozoic damselfly-like Odonatoptera of the ‘protozygopteran’ grade. J. Paleontol. 86, 81–104 (2012).

    Google Scholar 

  • Riek, E. F. Fossil insects from the Upper Permian of Natal, South Africa. Ann. Natal. Mus. 21, 513–532 (1973).

    Google Scholar 

  • Gallego, O. F. et al. The most ancient Platyperlidae (Insecta, Perlida= Plecoptera) from early Late Triassic deposits in southern South America. Ameghiniana 48, 447–461 (2011).

    Google Scholar 

  • Martins-Neto, R. G., Gallego, O. F. & Melchor, R. N. The Triassic insect fauna from South America (Argentina, Brazil and Chile): a checklist (except Blattoptera and Coleoptera) and descriptions of new taxa. Acta Zool. Cracoviensia 46, 229–256 (2003).

    Google Scholar 

  • van Dijk, D. E. & Geertsema, H. A new genus of Permian Plecoptera (Afroperla) from KwaZulu-Natal, South Africa. Palaeontogr. B 12, 268–270 (2004).

    Google Scholar 

  • Béthoux, O., Cui, Y., Kondratieff, B., Stark, B. & Ren, D. At last, a Pennsylvanian stem-stonefly (Plecoptera) discovered. BMC Evol. Biol. 11, 248 (2011).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Schubnel, T., Perdu, L., Roques, P., Garrouste, R. & Nel, A. Two new stem-stoneflies discovered in the Pennsylvanian Avion locality, Pas-de-Calais, France (Insecta: ‘Exopterygota’). Alcheringa Australas. J. Palaeontol. 43, 1–6 (2019).

    Google Scholar 

  • Sharov, A. G. In Fundamentals of Paleontology: Arthropoda, Tracheata, Chelicerata. (eds. Rohdendorf, B. B. & Davis, D. R.) vol. 9 173–179 (Smithsonian Institution Libraries and NSCF, 1991).

  • Sinitshenkova, N. D. In History of insects. (eds. Rasnitsyn, A. P. & Quicke, D. L. J.) Ch. 3.3, 388–426 (Kluwer Academic Publishers, 2002).

  • Hayes, P. A. & Collinson, M. E. The Flora of the insect limestone (latest Eocene) from the Isle of Wight, southern England. Earth Environ. Sci. Trans. R. Soc. Edinb. 104, 245–261 (2014).

    Google Scholar 

  • Zhang, Q. et al. Mayflies as resource pulses in Jurassic lacustrine ecosystems. Geology 50, 1043–1047 (2022).

    CAS 

    Google Scholar 

  • Prokop, J. et al. Ecomorphological diversification of the Late Palaeozoic Palaeodictyopterida reveals different larval strategies and amphibious lifestyle in adults. R. Soc. Open Sci. 6, 190460 (2019).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Prokop, J., Nel, A., Engel, M. S., Pecharová, M. & Hörnschemeyer, T. New Carboniferous fossils of Spilapteridae enlighten postembryonic wing development in Palaeodictyoptera. Syst. Entomol. 41, 178–190 (2016).

    Google Scholar 

  • Dos Santos, T. B., de Souza Pinheiro, E. R. & Iannuzzi, R. First evidence of seed predation by arthropods from Gondwana and its early Paleozoic history (Rio Bonito Formation, Paraná Basin, Brazil). PALAIOS 35, 292–301 (2020).

    Google Scholar 

  • Nel, A., Garrouste, R. & Prokop, J. The first African Anthracoptilidae (Insecta: Paoliida) near the Permian—Triassic boundary in Kenya. Zootaxa 3925, 145 (2015).

    PubMed 

    Google Scholar 

  • Riek, E. F. An unusual immature insect from the Upper Permian of Natal. Ann. Natal. Mus. 22, 271–274 (1974).

    Google Scholar 

  • Dunlop, J. A., Penney, D., Tetlie, O. E. & Anderson, L. I. How many species of fossil arachnids are there? J. Arachnol. 36, 267–272 (2008).

    Google Scholar 

  • Rasnitsyn, A. P. et al. Sequence and scale of changes in the terrestrial biota during the Cretaceous (based on materials from fossil resins). Cretac. Res. 61, 234–255 (2016).

    Google Scholar 

  • Manum, S. B., Bose, M. N. & Sawyer, R. T. Clitellate cocoons in freshwater deposits since the Triassic. Zool. Scr. 20, 347–366 (1991).

    Google Scholar 

  • Struck, T. H. et al. Phylogenomic analyses unravel annelid evolution. Nature 471, 95–98 (2011).

    CAS 
    PubMed 

    Google Scholar 

  • Parry, L., Tanner, A. & Vinther, J. The origin of annelids. Palaeontology 57, 1091–1103 (2014).

    Google Scholar 

  • Mikulic, D. G., Briggs, D. E. G. & Kluessendorf, J. A Silurian soft-bodied biota. Science 228, 715–717 (1985).

    CAS 
    PubMed 

    Google Scholar 

  • Prokop, J., Szwedo, J., Lapeyrie, J., Garrouste, R. & Nel, A. New Middle Permian insects from Salagou Formation of the Lodève Basin in southern France (Insecta: Pterygota). Ann. Soci.été Entomol. Fr. NS 51, 14–51 (2015).

    Google Scholar 

  • Cai, C. et al. Integrated phylogenomics and fossil data illuminate the evolution of beetles. R. Soc. Open Sci. 9, 211771 (2022).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Srivastava, A. K. & Agnihotri, D. Dilemma of late Palaeozoic mixed floras in Gondwana. Palaeogeogr. Palaeoclimatol. Palaeoecol. 298, 54–69 (2010).

    Google Scholar 

  • Raff, R. A. Written in stone: fossils, genes and evo–devo. Nat. Rev. Genet. 8, 911–920 (2007).

    CAS 
    PubMed 

    Google Scholar 

  • Cunningham, J. A., Liu, A. G., Bengtson, S. & Donoghue, P. C. J. The origin of animals: can molecular clocks and the fossil record be reconciled? BioEssays 39, 1–12 (2017).

    PubMed 

    Google Scholar 

  • McCulloch, G. A., Wallis, G. P. & Waters, J. M. A time-calibrated phylogeny of southern hemisphere stoneflies: Testing for Gondwanan origins. Mol. Phylogenet. Evol. 96, 150–160 (2016).

    PubMed 

    Google Scholar 

  • Cui, Y. et al. Rhythms of Insect Evolution. (John Wiley & Sons, Ltd, 2019).

  • Letsch, H. et al. Combining molecular datasets with strongly heterogeneous taxon coverage enlightens the peculiar biogeographic history of stoneflies (Insecta: Plecoptera). Syst. Entomol. 46, 952–967 (2021).

    Google Scholar 

  • Raja, N. B. et al. Colonial history and global economics distort our understanding of deep-time biodiversity. Nat. Ecol. Evol. 6, 145–154 (2022).

    PubMed 

    Google Scholar 

  • Beattie, R. The geological setting and palaeoenvironmental and palaeoecological reconstructions of the Upper Permian insect beds at Belmont, New South Wales, Australia. Afr. Invertebr. 48, 18 (2007).

    Google Scholar 

  • Bernardi, M. et al. Late Permian (Lopingian) terrestrial ecosystems: a global comparison with new data from the low-latitude Bletterbach Biota. Earth Sci. Rev. 175, 18–43 (2017).

    Google Scholar 

  • Jackson, S. E., Pearson, N. J., Griffin, W. L. & Belousova, E. A. The application of laser ablation-inductively coupled plasma-mass spectrometry to in situ U–Pb zircon geochronology. Chem. Geol. 211, 47–69 (2004).

    CAS 

    Google Scholar 

  • Sláma, J. et al. Plešovice zircon—a new natural reference material for U–Pb and Hf isotopic microanalysis. Chem. Geol. 249, 1–35 (2008).

    Google Scholar 

  • Wiedenbeck, M. et al. Three natural zircon standards for U‐Th‐Pb, Lu‐Hf, trace element and REE analyses. Geostand. Newsl. 19, 1–23 (2007).

    Google Scholar 

  • Horstwood, M. S. A. et al. Community‐derived standards for LA ‐ ICP ‐ MS U‐(Th‐)Pb geochronology—uncertainty propagation, age interpretation and data reporting. Geostand. Geoanal. Res. 40, 311–332 (2016).

    CAS 

    Google Scholar 

  • Paton, C., Hellstrom, J., Paul, B., Woodhead, J. & Hergt, J. Iolite: freeware for the visualisation and processing of mass spectrometric data. J. Anal. Spectrom. 26, 2508–2518 (2011).

    CAS 

    Google Scholar 

  • Petrus, J. A. & Kamber, B. S. VizualAge: a novel approach to laser ablation ICP-MS U-Pb geochronology data reduction. Geostand. Geoanal. Res. 36, 247–280 (2012).

    CAS 

    Google Scholar 

  • Rees, P. Mc. A., Gibbs, M. T., Ziegler, A. M., Kutzbach, J. E. & Behling, P. J. Permian climates: evaluating model predictions using global paleobotanical data. Geology 27, 891 (1999).

    Google Scholar 

  • Walter, H. Vegetation of the Earth and ecological systems of the geo-biosphere. (Springer-Verlag, 1985).

  • Lucas, S. G., Schneider, J. W. & Cassinis, G. Non-marine Permian biostratigraphy and biochronology: an introduction. Geol. Soc. Lond. Spec. Publ. 265, 1–14 (2006).

    Google Scholar 

  • Scotese, C. In Atlas of Permo-Triassic Paleogeographic Maps (Mollweide Projection), Maps 43–52, Volumes 3 & 4 of the PALEOMAP Atlas for ArcGIS. (PALEOMAP Project, 2014).


  • Source: Ecology - nature.com

    Breeding and migration performance metrics highlight challenges for White-naped Cranes

    Grassland coverage change and its humanity effect factors quantitative assessment in Zhejiang province, China, 1980–2018