in

Bridging landscape ecology and urban science to respond to the rising threat of mosquito-borne diseases

  • World Urbanization Prospects: The 2018 Revision (UN Department of Economic and Social Affairs, 2018).

  • Global Vector Control Response 2017–2030 (World Health Organization & UNICEF, 2017).

  • Gubler, D. J. Dengue, urbanization and globalization: the unholy trinity of the 21st century. Trop. Med. Health 39, S3–S11 (2011).

    Article 

    Google Scholar 

  • Brady, O. J. et al. Refining the global spatial limits of dengue virus transmission by evidence-based consensus. PLoS Negl. Trop. Dis. 6, e1760 (2012).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Kraemer, M. U. et al. Past and future spread of the arbovirus vectors Aedes aegypti and Aedes albopictus. Nat. Microbiol. 4, 854–863 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Brown, J. E. et al. Worldwide patterns of genetic differentiation imply multiple ‘domestications’ of Aedes aegypti, a major vector of human diseases. Proc. R. Soc. B Biol. Sci. 278, 2446–2454 (2011).

    Article 

    Google Scholar 

  • Padmanabha, H., Durham, D., Correa, F., Diuk-Wasser, M. & Galvani, A. The interactive roles of Aedes aegypti super-production and human density in dengue transmission. PLoS Negl. Trop. Dis. 6, e1799 (2012).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Stewart-Ibarra, A. M. et al. Spatiotemporal clustering, climate periodicity, and social-ecological risk factors for dengue during an outbreak in Machala, Ecuador, in 2010. BMC Infect. Dis. 14, 610 (2014).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Cavany, S. M. et al. Optimizing the deployment of ultra-low volume and targeted indoor residual spraying for dengue outbreak response. PLoS Comput. Biol. 16, e1007743 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Stefopoulou, Α et al. Reducing Aedes albopictus breeding sites through education: a study in urban area. PLoS ONE 13, e0202451 (2018).

    Article 

    Google Scholar 

  • Lindsay, S. W., Wilson, A., Golding, N., Scott, T. W. & Takken, W.Improving the built environment in urban areas to control Aedes aegypti-borne diseases. Bull. World Health Organ. 95, 607–608 (2017).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Echaubard, P. et al. Fostering social innovation and building adaptive capacity for dengue control in Cambodia: a case study. Infect. Dis. Poverty 9, 126 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Vazquez-Prokopec, G. M., Lenhart, A. & Manrique-Saide, P. Housing improvement: a novel paradigm for urban vector-borne disease control? Trans. R. Soc. Trop. Med. Hyg. 110, 567–569 (2016).

    Article 
    PubMed 

    Google Scholar 

  • Malone, R. W. et al. Zika virus: medical countermeasure development challenges. PLoS Negl. Trop. Dis. 10, e0004530 (2016).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Murdock, C. C., Evans, M. V., McClanahan, T. D., Miazgowicz, K. L. & Tesla, B. Fine-scale variation in microclimate across an urban landscape shapes variation in mosquito population dynamics and the potential of Aedes albopictus to transmit arboviral disease. PLoS Negl. Trop. Dis. 11, e0005640 (2017).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Bradley, C. A. & Altizer, S. Urbanization and the ecology of wildlife diseases. Trends Ecol. Evol. 22, 95–102 (2007).

    Article 
    PubMed 

    Google Scholar 

  • McDonald, R. I., Kareiva, P. & Forman, R. T. The implications of current and future urbanization for global protected areas and biodiversity conservation. Biol. Conserv. 141, 1695–1703 (2008).

    Article 

    Google Scholar 

  • Ferraguti, M. et al. Effects of landscape anthropization on mosquito community composition and abundance. Sci. Rep. 6, 29002 (2016).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Juliano, S. A., Westby, K. M. & Ower, G. D. Know your enemy: effects of a predator on native and invasive container mosquitoes. J. Med. Entomol. 56, 320–328 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Mahendra, A. & Seto, K. C. Upward and Outward Growth: Managing Urban Expansion for More Equitable Cities in the Global South (World Resources Institute, 2019).

  • Moretto, L. et al. Challenges of water and sanitation service co-production in the global South. Environ. Urban. 30, 425–443 (2018).

    Article 

    Google Scholar 

  • Seto, K. C., Sánchez-Rodríguez, R. & Fragkias, M. The new geography of contemporary urbanization and the environment. Annu. Rev. Environ. Resour. 35, 167–194 (2010).

    Article 

    Google Scholar 

  • Estallo, E. L. et al. A decade of arbovirus emergence in the temperate southern cone of South America: dengue, Aedes aegypti and climate dynamics in Córdoba, Argentina. Heliyon 6, e04858 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Kaufman, M. G. & Fonseca, D. M.Invasion biology of Aedes japonicus japonicus (Diptera: Culicidae). Annu. Rev. Entomol. 59, 31–49 (2014).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Kache, P. A. et al. Environmental determinants of Aedes albopictus abundance at a northern limit of its range in the United States. Am. J. Trop. Med. Hyg. 102, 436–447 (2020).

    Article 
    PubMed 

    Google Scholar 

  • Eskew, E. A. & Olival, K. J. De-urbanization and zoonotic disease risk. EcoHealth 15, 707–712 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Biehler, D. et al. in The Palgrave Handbook of Critical Physical Geography 295–318 (Springer, 2018).

  • Stoddard, S. T. et al. The role of human movement in the transmission of vector-borne pathogens. PLoS Negl. Trop. Dis. 3, e481 (2009).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Mordecai, E. A. et al. Detecting the impact of temperature on transmission of Zika, dengue, and Chikungunya using mechanistic models. PLoS Negl. Trop. Dis. 11, e0005568 (2017).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Wong, P. P.-Y., Lai, P.-C., Low, C.-T., Chen, S. & Hart, M. The impact of environmental and human factors on urban heat and microclimate variability. Build. Environ. 95, 199–208 (2016).

    Article 

    Google Scholar 

  • Rey, J. R. & O’Connell, S. M. Oviposition by Aedes aegypti and Aedes albopictus: influence of congeners and of oviposition site characteristics. J. Vector Ecol. 39, 190–196 (2014).

    Article 
    PubMed 

    Google Scholar 

  • Leisnham, P. T. & Juliano, S. Spatial and temporal patterns of coexistence between competing Aedes mosquitoes in urban Florida. Oecologia 160, 343–352 (2009).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Paploski, I. A. D. et al. Storm drains as larval development and adult resting sites for Aedes aegypti and Aedes albopictus in Salvador, Brazil. Parasit. Vectors 9, 419 (2016).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Zainon, N., Rahim, F. A. M., Roslan, D. & Abd Samat, A. H. Prevention of Aedes breeding habitats for urban high-rise building in Malaysia. Plan. Malay. 14, 115–128 (2016).

    Google Scholar 

  • Kenneson, A. et al. Social-ecological factors and preventive actions decrease the risk of dengue infection at the household-level: results from a prospective dengue surveillance study in Machala, Ecuador. PLoS Negl. Trop. Dis. 11, e0006150 (2017).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Harrington, L. C. et al. Dispersal of the dengue vector Aedes aegypti within and between rural communities. Am. J. Trop. Med. Hyg. 72, 209–220 (2005).

    Article 
    PubMed 

    Google Scholar 

  • Vavassori, L., Saddler, A. & Müller, P. Active dispersal of Aedes albopictus: a mark–release–recapture study using self-marking units. Parasit. Vectors 12, 583 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Ren, H., Wu, W., Li, T. & Yang, Z. Urban villages as transfer stations for dengue fever epidemic: a case study in the Guangzhou, China. PLoS Negl. Trop. Dis. 13, e0007350 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Charron, D. F. in Ecohealth Research in Practice 255–271 (Springer, 2012).

  • Lippi, C. A. et al. Exploring the utility of social–ecological and entomological risk factors for dengue infection as surveillance indicators in the dengue hyper-endemic city of Machala, Ecuador. PLoS Negl. Trop. Dis. 15, e0009257 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Wijayanti, S. P. et al. The importance of socio-economic versus environmental risk factors for reported dengue cases in Java, Indonesia. PLoS Negl. Trop. Dis. 10, e0004964 (2016).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Zellweger, R. M. et al. Socioeconomic and environmental determinants of dengue transmission in an urban setting: an ecological study in Nouméa, New Caledonia. PLoS Negl. Trop. Dis. 11, e0005471 (2017).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Ryan, S. J. et al. Socio-ecological factors associated with dengue risk and Aedes aegypti presence in the Galápagos Islands, Ecuador. Int. J. Environ. Res. Public Health 16, 682 (2019).

    Article 
    PubMed Central 

    Google Scholar 

  • Roiz, D. et al. Integrated Aedes management for the control of Aedes-borne diseases. PLoS Negl. Trop. Dis. 12, e0006845 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Sanchez, L. et al. Aedes aegypti larval indices and risk for dengue epidemics. Emerg. Infect. Dis. 12, 800–806 (2006).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Cromwell, E. A. et al. The relationship between entomological indicators of Aedes aegypti abundance and dengue virus infection. PLoS Negl. Trop. Dis. 11, e0005429 (2017).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Honório, N. A. et al. Spatial evaluation and modeling of dengue seroprevalence and vector density in Rio de Janeiro, Brazil. PLoS Negl. Trop. Dis. 3, e545 (2009).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Chadee, D. Dengue cases and Aedes aegypti indices in Trinidad, West Indies. Acta Trop. 112, 174–180 (2009).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Fustec, B. et al. Complex relationships between Aedes vectors, socio-economics and dengue transmission—lessons learned from a case-control study in northeastern Thailand. PLoS Negl. Trop. Dis. 14, e0008703 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Scarpino, S. V. & Petri, G. On the predictability of infectious disease outbreaks. Nat. Commun. 10, 898 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Batty, M. in Encyclopedia of Complexity and Systems Science (ed. Meyers, R.) 1041–1071 (Springer, 2009).

  • McPhearson, T., Haase, D., Kabisch, N. & Gren, Å. Advancing understanding of the complex nature of urban systems. Ecol. Indic. 70, 566–573 (2016).

  • Rus, K., Kilar, V. & Koren, D. Resilience assessment of complex urban systems to natural disasters: a new literature review. Int. J. Disaster Risk Reduct. 31, 311–330 (2018).

    Article 

    Google Scholar 

  • Bettencourt, L. M. Introduction to Urban Science: Evidence and Theory of Cities as Complex Systems (MIT Press, 2021).

  • Handbook for Integrated Vector Management (World Health Organization, 2012).

  • Kolimenakis, A. et al. The role of urbanisation in the spread of Aedes mosquitoes and the diseases they transmit—a systematic review. PLoS Negl. Trop. Dis. 15, e0009631 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Evans, M. V., Bhatnagar, S., Drake, J. M., Murdock, C. C. & Mukherjee, S.Socio‐ecological dynamics in urban systems: an integrative approach to mosquito‐borne disease in Bengaluru, India. People Nat. 4, 730–743 (2022).

    Article 

    Google Scholar 

  • Cook, E. M., Hall, S. J. & Larson, K. L. Residential landscapes as social–ecological systems: a synthesis of multi-scalar interactions between people and their home environment. Urban Ecosyst. 15, 19–52 (2012).

    Article 

    Google Scholar 

  • Bai, X., McAllister, R. R., Beaty, R. M. & Taylor, B. Urban policy and governance in a global environment: complex systems, scale mismatches and public participation. Curr. Opin. Environ. Sustain. 2, 129–135 (2010).

    Article 

    Google Scholar 

  • Batty, M. Inventing Future Cities (MIT Press, 2018).

  • McPhearson, T. et al. Advancing urban ecology toward a science of cities. BioScience 66, 198–212 (2016).

    Article 

    Google Scholar 

  • Grimm, N. B., Cook, E. M., Hale, R. L. & Iwaniec, D. M. in The Routledge Handbook of Urbanization and Global Environmental Change 227–236 (Routledge, 2015).

  • Haase, D. et al. A quantitative review of urban ecosystem service assessments: concepts, models, and implementation. Ambio 43, 413–433 (2014).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Filatova, T., Parker, D. & Van der Veen, A. Agent-based urban land markets: agent’s pricing behavior, land prices and urban land use change. J. Artif. Soc. Soc. Simul. 12, 3 (2009).

    Google Scholar 

  • Acuto, M., Parnell, S. & Seto, K. C. Building a global urban science. Nat. Sustain. 1, 2–4 (2018).

    Article 

    Google Scholar 

  • Collins, M. & Kapucu, N. Early warning systems and disaster preparedness and response in local government. Disaster Prev. Manag. 17, 587–600 (2008).

    Article 

    Google Scholar 

  • Ahern, J. From fail-safe to safe-to-fail: sustainability and resilience in the new urban world. Landsc. Urban Plan. 100, 341–343 (2011).

    Article 

    Google Scholar 

  • Gordon-Larsen, P., Nelson, M. C., Page, P. & Popkin, B. M. Inequality in the built environment underlies key health disparities in physical activity and obesity. Pediatrics 117, 417–424 (2006).

    Article 
    PubMed 

    Google Scholar 

  • Zhou, S. & Lin, R. Spatial–temporal heterogeneity of air pollution: the relationship between built environment and on-road PM2.5 at micro scale. Transp. Res. D Transp. Environ. 76, 305–322 (2019).

    Article 

    Google Scholar 

  • Frank, L. D. & Engelke, P. Multiple impacts of the built environment on public health: walkable places and the exposure to air pollution. Int. Reg. Sci. Rev. 28, 193–216 (2005).

    Article 

    Google Scholar 

  • Diuk-Wasser, M. A., VanAcker, M. C. & Fernandez, M. P. Impact of land use changes and habitat fragmentation on the eco-epidemiology of tick-borne diseases. J. Med. Entomol. 58, 1546–1564 (2021).

    Article 
    PubMed 

    Google Scholar 

  • Sengupta, U., Rauws, W. S. & De Roo, G.Planning and complexity: engaging with temporal dynamics, uncertainty and complex adaptive systems. Environ. Plann. B Plann. Des. 43, 970–974 (2016).

    Article 

    Google Scholar 

  • Shi, Y. et al. Assessment methods of urban system resilience: from the perspective of complex adaptive system theory. Cities 112, 103141 (2021).

    Article 

    Google Scholar 

  • Holland, J. H. Signals and Boundaries: Building Blocks for Complex Adaptive Systems (MIT Press, 2012).

  • Preiser, R., Biggs, R., De Vos, A. & Folke, C. Social-ecological systems as complex adaptive systems. Ecol. Soc. 23, 46–61 (2018).

    Article 

    Google Scholar 

  • Levin, S. et al. Social–ecological systems as complex adaptive systems: modeling and policy implications. Environ. Dev. Econ. 18, 111–132 (2013).

    Article 

    Google Scholar 

  • Waldrop, M. M. Complexity: The Emerging Science at the Edge of Order and Chaos (Simon and Schuster, 1993).

  • Nel, D., du Plessis, C. & Landman, K. Planning for dynamic cities: introducing a framework to understand urban change from a complex adaptive systems approach. Int. Plan. Stud. 23, 250–263 (2018).

    Article 

    Google Scholar 

  • Sharifi, A. Resilient urban forms: a macro-scale analysis. Cities 85, 1–14 (2019).

    Article 

    Google Scholar 

  • Borgström, S. T., Elmqvist, T., Angelstam, P. & Alfsen-Norodom, C. Scale mismatches in management of urban landscapes. Ecol. Soc. 11, 16 (2006).

    Article 

    Google Scholar 

  • Walker, B. H., Carpenter, S. R., Rockstrom, J., Crépin, A.-S. & Peterson, G. D. Drivers, “slow” variables, “fast” variables, shocks, and resilience. Ecol. Soc. 17, 30 (2012).

    Article 

    Google Scholar 

  • Carpenter, S. R. & Turner, M. G. Hares and tortoises: interactions of fast and slow variables in ecosystems. Ecosystems 3, 495–497 (2000).

    Article 

    Google Scholar 

  • Peters, D. P., Bestelmeyer, B. T. & Turner, M. G. Cross-scale interactions and changing pattern–process relationships: consequences for system dynamics. Ecosystems 10, 790–796 (2007).

    Article 

    Google Scholar 

  • Crépin, A.-S. Using fast and slow processes to manage resources with thresholds. Environ. Resour. Econ. 36, 191–213 (2007).

    Article 

    Google Scholar 

  • Soranno, P. A. et al. Cross‐scale interactions: quantifying multi‐scaled cause–effect relationships in macrosystems. Front. Ecol. Environ. 12, 65–73 (2014).

    Article 

    Google Scholar 

  • Pickett, S. T. et al. Theoretical perspectives of the Baltimore Ecosystem Study: conceptual evolution in a social–ecological research project. BioScience 70, 297–314 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Gunderson, L. H., Holling, C. S. & Light, S. S. Barriers and Bridges to the Renewal of Ecosystems and Institutions (Columbia Univ. Press, 1995).

  • Turner, M. G., Dale, V. H. & Gardner, R. H. Predicting across scales: theory development and testing. Landsc. Ecol. 3, 245–252 (1989).

    Article 

    Google Scholar 

  • Wu, J. & Loucks, O. L. From balance of nature to hierarchical patch dynamics: a paradigm shift in ecology. Q. Rev. Biol. 70, 439–466 (1995).

    Article 

    Google Scholar 

  • Flores, A., Pickett, S. T., Zipperer, W. C., Pouyat, R. V. & Pirani, R. Adopting a modern ecological view of the metropolitan landscape: the case of a greenspace system for the New York City region. Landsc. Urban Plan. 39, 295–308 (1998).

    Article 

    Google Scholar 

  • Fauchald, P. & Tveraa, T. Hierarchical patch dynamics and animal movement pattern. Oecologia 149, 383–395 (2006).

    Article 
    PubMed 

    Google Scholar 

  • Linton, J. & Budds, J. The hydrosocial cycle: defining and mobilizing a relational–dialectical approach to water. Geoforum 57, 170–180 (2014).

    Article 

    Google Scholar 

  • Knox, P. & Pinch, S. Urban Social Geography: an Introduction (Routledge, 2014).

  • Geels, F. W. From sectoral systems of innovation to socio-technical systems: insights about dynamics and change from sociology and institutional theory. Res. Policy 33, 897–920 (2004).

    Article 

    Google Scholar 

  • West, S., Haider, L. J., Stålhammar, S. & Woroniecki, S. A relational turn for sustainability science? Relational thinking, leverage points and transformations. Ecosyst. People 16, 304–325 (2020).

    Article 

    Google Scholar 

  • Jones, M. Phase space: geography, relational thinking, and beyond. Prog. Hum. Geogr. 33, 487–506 (2009).

    Article 

    Google Scholar 

  • Wohl, S. Considering how morphological traits of urban fabric create affordances for complex adaptation and emergence. Prog. Hum. Geogr. 40, 30–47 (2016).

    Article 

    Google Scholar 

  • Herold, M., Scepan, J. & Clarke, K. C. The use of remote sensing and landscape metrics to describe structures and changes in urban land uses. Environ. Plan. A 34, 1443–1458 (2002).

    Article 

    Google Scholar 

  • Morrison, A. C. et al. Temporal and geographic patterns of Aedes aegypti (Diptera: Culicidae) production in Iquitos, Peru. J. Med. Entomol. 41, 1123–1142 (2004).

    Article 
    PubMed 

    Google Scholar 

  • LaCon, G. et al. Shifting patterns of Aedes aegypti fine scale spatial clustering in Iquitos, Peru. PLoS Negl. Trop. Dis. 8, e3038 (2014).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Lai, S. et al. Seasonal and interannual risks of dengue introduction from South-East Asia into China, 2005–2015. PLoS Negl. Trop. Dis. 12, e0006743 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Gergel, S. E. & Turner, M. G. Learning Landscape Ecology: a Practical Guide to Concepts and Techniques (Springer, 2017).

  • Hosseini, P. R. et al. Does the impact of biodiversity differ between emerging and endemic pathogens? The need to separate the concepts of hazard and risk. Phil. Trans. R. Soc. B Biol. Sci. 372, 20160129 (2017).

    Article 

    Google Scholar 

  • LaDeau, S. L., Allan, B. F., Leisnham, P. T. & Levy, M. Z. The ecological foundations of transmission potential and vector‐borne disease in urban landscapes. Funct. Ecol. 29, 889–901 (2015).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Rowley, W. A. & Graham, C. L. The effect of temperature and relative humidity on the flight performance of female Aedes aegypti. J. Insect Physiol. 14, 1251–1257 (1968).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Evans, M. V. et al. Microclimate and larval habitat density predict adult Aedes albopictus abundance in urban areas. Am. J. Trop. Med. Hyg. 101, 362–370 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Alto, B. W. & Juliano, S. A. Temperature effects on the dynamics of Aedes albopictus (Diptera: Culicidae) populations in the laboratory. J. Med. Entomol. 38, 548–556 (2001).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Streutker, D. R. A remote sensing study of the urban heat island of Houston, Texas. Int. J. Remote Sens. 23, 2595–2608 (2002).

    Article 

    Google Scholar 

  • Fikrig, K. et al. Sugar feeding patterns of New York Aedes albopictus mosquitoes are affected by saturation deficit, flowers, and host seeking. PLoS Negl. Trop. Dis. 14, e0008244 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Samson, D. M. et al. Resting and energy reserves of Aedes albopictus collected in common landscaping vegetation in St. Augustine, Florida. J. Am. Mosq. Control Assoc. 29, 231–236 (2013).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Grove, J. M., Locke, D. H. & O’Neil-Dunne, J. P. An ecology of prestige in New York City: examining the relationships among population density, socio-economic status, group identity, and residential canopy cover. Environ. Manag. 54, 402–419 (2014).

    Article 

    Google Scholar 

  • Leong, M., Dunn, R. R. & Trautwein, M. D. Biodiversity and socioeconomics in the city: a review of the luxury effect. Biol. Lett. 14, 20180082 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Aronson, M. F. et al. Biodiversity in the city: key challenges for urban green space management. Front. Ecol. Environ. 15, 189–196 (2017).

    Article 

    Google Scholar 

  • Hemme, R. R., Thomas, C. L., Chadee, D. D. & Severson, D. W. Influence of urban landscapes on population dynamics in a short-distance migrant mosquito: evidence for the dengue vector Aedes aegypti. PLoS Negl. Trop. Dis. 4, e634 (2010).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • García-Betancourt, T., Higuera-Mendieta, D. R., González-Uribe, C., Cortés, S. & Quintero, J. Understanding water storage practices of urban residents of an endemic dengue area in Colombia: perceptions, rationale and socio-demographic characteristics. PLoS ONE 10, e0129054 (2015).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Plummer, R., de Loë, R. & Armitage, D. A systematic review of water vulnerability assessment tools. Water Resour. Manag. 26, 4327–4346 (2012).

    Article 

    Google Scholar 

  • Ledogar, R. J. et al. Mobilising communities for Aedes aegypti control: the SEPA approach. BMC Public Health 17, 103–114 (2017).

    Article 

    Google Scholar 

  • Michalos, A. C. Encyclopedia of Quality of Life and Well-being Research (Springer Netherlands, 2014).

  • Reiner, R. C. Jr, Stoddard, S. T. & Scott, T. W. Socially structured human movement shapes dengue transmission despite the diffusive effect of mosquito dispersal. Epidemics 6, 30–36 (2014).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Whiteford, L. M. The ethnoecology of dengue fever. Med. Anthropol. Q. 11, 202–223 (1997).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Ibarra, A. M. S. et al. A social–ecological analysis of community perceptions of dengue fever and Aedes aegypti in Machala, Ecuador. BMC Public Health 14, 1135 (2014).

    Article 

    Google Scholar 

  • Mitchell-Foster, K. L. Interdisciplinary Knowledge Translation and Evaluation Strategies for Participatory Dengue Prevention in Machala, Ecuador. PhD thesis, Univ. British Columbia (2013).

  • Kropf, K.Aspects of urban form. Urban Morphol. 13, 105–120 (2009).

    Article 

    Google Scholar 

  • Rose, L. A. Topographical constraints and urban land supply indexes. J. Urban Econ. 26, 335–347 (1989).

    Article 

    Google Scholar 

  • Liu, F. Interrupted Development”: The Effects of Blighted Neighborhoods and Topographic Barriers on Cities. PhD thesis, George Washington Univ. (2006).

  • Durand-Lasserve, A. & Selod, H. in Urban Land Markets 101–132 (Springer, 2009).

  • Talen, E. City Rules: How Regulations Affect Urban Form (Island Press, 2012).

  • Scheer, B. C. The Evolution of Urban Form: Typology for Planners and Architects (Routledge, 2017).

  • Dimoudi, A., Kantzioura, A., Zoras, S., Pallas, C. & Kosmopoulos, P. Investigation of urban microclimate parameters in an urban center. Energy Build. 64, 1–9 (2013).

    Article 

    Google Scholar 

  • Middel, A., Häb, K., Brazel, A. J., Martin, C. A. & Guhathakurta, S. Impact of urban form and design on mid-afternoon microclimate in Phoenix local climate zones. Landsc. Urban Plan. 122, 16–28 (2014).

    Article 

    Google Scholar 

  • Honório, N. A. et al. Dispersal of Aedes aegypti and Aedes albopictus (Diptera: Culicidae) in an urban endemic dengue area in the State of Rio de Janeiro, Brazil. Mem. Inst. Oswaldo Cruz 98, 191–198 (2003).

    Article 
    PubMed 

    Google Scholar 

  • Seto, K. C. et al. in Climate Change 2014: Mitigation of Climate Change (eds Edenhofer, O. et al.) 923–1000 (Cambridge Univ. Press, 2014).

  • Romeo-Aznar, V., Freitas, L. P., Cruz, O. G., King, A. & Pascual, M. Fine-scale heterogeneity in population density predicts wave dynamics in dengue epidemics. Nat. Commun. 13, 996 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Lafferty, K. D. et al. Local extinction of the Asian tiger mosquito (Aedes albopictus) following rat eradication on Palmyra Atoll. Biol. Lett. 14, 20170743 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Rodríguez, M. C., Dupont-Courtade, L. & Oueslati, W. Air pollution and urban structure linkages: evidence from European cities. Renew. Sustain. Energy Rev. 53, 1–9 (2016).

    Article 

    Google Scholar 

  • Venter, Z. S., Krog, N. H. & Barton, D. N. Linking green infrastructure to urban heat and human health risk mitigation in Oslo, Norway. Sci. Total Environ. 709, 136193 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Little, E., Barrera, R., Seto, K. C. & Diuk-Wasser, M. Co-occurrence patterns of the dengue vector Aedes aegypti and Aedes mediovitattus, a dengue competent mosquito in Puerto Rico. EcoHealth 8, 365–375 (2011).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Pereira dos Santos, T. et al. Potential of Aedes albopictus as a bridge vector for enzootic pathogens at the urban–forest interface in Brazil. Emerg. Microbes Infect. 7, 191 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Cardoso, J. et al. Yellow fever virus in Haemagogus leucocelaenus and Aedes serratus mosquitoes, southern Brazil, 2008. Emerg. Infect. Dis. 16, 1918–1924 (2010).

    Article 
    PubMed Central 

    Google Scholar 

  • Grobbelaar, A. A. et al. Resurgence of yellow fever in Angola, 2015–2016. Emerg. Infect. Dis. 22, 1854–1855 (2016).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Tonkiss, F. Cities by Design: the Social Life of Urban Form (John Wiley & Sons, 2014).

  • Hillier, B., Greene, M. & Desyllas, J. Self-generated neighbourhoods: the role of urban form in the consolidation of informal settlements. Urban Des. Int. 5, 61–96 (2000).

    Article 

    Google Scholar 

  • Li, X., Mou, Y., Wang, H., Yin, C. & He, Q. How does polycentric urban form affect urban commuting? Quantitative measurement using geographical big data of 100 cities in China. Sustainability 10, 4566 (2018).

    Article 

    Google Scholar 

  • Wen, T.-H., Lin, M.-H., Teng, H.-J. & Chang, N.-T. Incorporating the human–Aedes mosquito interactions into measuring the spatial risk of urban dengue fever. Appl. Geogr. 62, 256–266 (2015).

    Article 

    Google Scholar 

  • Achee, N. L. et al. A critical assessment of vector control for dengue prevention. PLoS Negl. Trop. Dis. 9, e0003655 (2015).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Scott, T. W. & Morrison, A. C. Vector dynamics and transmission of dengue virus: implications for dengue surveillance and prevention strategies: vector dynamics and dengue prevention. Curr. Top. Microbiol. Immunol. 338, 115–128 (2010).

    PubMed 

    Google Scholar 

  • Delmelle, E., Kim, C., Xiao, N. & Chen, W. Methods for space–time analysis and modeling: an overview. Int. J. Appl. Geospat. Res. 4, 1–18 (2013).

    Article 

    Google Scholar 

  • Kua, K. P. & Lee, S. W. H. Randomized trials of housing interventions to prevent malaria and Aedes-transmitted diseases: a systematic review and meta-analysis. PLoS ONE 16, e0244284 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Chareonviriyaphap, T. et al. The use of an experimental hut for evaluating the entering and exiting behavior of Aedes aegypti (Diptera: Culicidae), a primary vector of dengue in Thailand. J. Vector Ecol. 30, 344–346 (2005).

    PubMed 

    Google Scholar 

  • Maneerat, S. & Daudé, E. A spatial agent-based simulation model of the dengue vector Aedes aegypti to explore its population dynamics in urban areas. Ecol. Model. 333, 66–78 (2016).

    Article 

    Google Scholar 

  • Barbu, C. M. et al. The effects of city streets on an urban disease vector. PLoS Comput. Biol. 9, e1002801 (2013).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Stewart Ibarra, A. M. et al. Dengue vector dynamics (Aedes aegypti) influenced by climate and social factors in Ecuador: implications for targeted control. PLoS ONE 8, e78263 (2013).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Mesch, G. S. & Manor, O. Social ties, environmental perception, and local attachment. Environ. Behav. 30, 504–519 (1998).

    Article 

    Google Scholar 

  • Matthews, L. & Haydon, D. Introduction. Cross-scale influences on epidemiological dynamics: from genes to ecosystems. J. R. Soc. Interface 4, 763–765 (2007).

    Article 
    PubMed Central 

    Google Scholar 

  • Strauss, A. T., Shoemaker, L. G., Seabloom, E. W. & Borer, E. T. Cross‐scale dynamics in community and disease ecology: relative timescales shape the community ecology of pathogens. Ecology 100, e02836 (2019).

    Article 
    PubMed 

    Google Scholar 

  • Schreiber, S. J. et al. Cross-scale dynamics and the evolutionary emergence of infectious diseases. Virus Evol. 7, veaa105 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Ramalho, C. E. & Hobbs, R. J. Time for a change: dynamic urban ecology. Trends Ecol. Evol. 27, 179–188 (2012).

    Article 
    PubMed 

    Google Scholar 

  • Waggoner, J. J. et al. Homotypic dengue virus reinfections in Nicaraguan children. J. Infect. Dis. 214, 986–993 (2016).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Ezeakacha, N. F. & Yee, D. A. The role of temperature in affecting carry-over effects and larval competition in the globally invasive mosquito Aedes albopictus. Parasit. Vectors 12, 123 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Evans, M. V. et al. Carry-over effects of urban larval environments on the transmission potential of dengue-2 virus. Parasit. Vectors 11, 426 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Lowe, R. et al. Combined effects of hydrometeorological hazards and urbanisation on dengue risk in Brazil: a spatiotemporal modelling study. Lancet Planet. Health 5, e209–e219 (2021).

    Article 
    PubMed 

    Google Scholar 

  • Chen, S.-C. et al. Lagged temperature effect with mosquito transmission potential explains dengue variability in southern Taiwan: insights from a statistical analysis. Sci. Total Environ. 408, 4069–4075 (2010).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Elsinga, J. et al. Knowledge, attitudes, and preventive practices regarding dengue in Maracay, Venezuela. Am. J. Trop. Med. Hyg. 99, 195–203 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Wong, L. P., Shakir, S. M. M., Atefi, N. & AbuBakar, S. Factors affecting dengue prevention practices: nationwide survey of the Malaysian public. PLoS ONE 10, e0122890 (2015).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Des Roches, S. et al. Socio‐eco‐evolutionary dynamics in cities. Evol. Appl. 14, 248–267 (2021).

    Article 
    PubMed 

    Google Scholar 

  • Pickett, S. T. et al. Urban ecological systems: linking terrestrial ecological, physical, and socioeconomic components of metropolitan areas. Annu. Rev. Ecol. Syst. 32, 127–157 (2001).

    Article 

    Google Scholar 

  • Combs, M. A. et al. Socio‐ecological drivers of multiple zoonotic hazards in highly urbanized cities. Glob. Change Biol. 28, 1705–1724 (2022).

    Article 
    CAS 

    Google Scholar 

  • Zhou, Q.A review of sustainable urban drainage systems considering the climate change and urbanization impacts. Water 6, 976–992 (2014).

    Article 

    Google Scholar 

  • Stewart-Ibarra, A. M. et al. Co-developing climate services for public health: stakeholder needs and perceptions for the prevention and control of Aedes-transmitted diseases in the Caribbean. PLoS Negl. Trop. Dis. 13, e0007772 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Hastings, A. Timescales, dynamics, and ecological understanding. Ecology 91, 3471–3480 (2010).

    Article 
    PubMed 

    Google Scholar 

  • Lippi, C. A. et al. A network analysis framework to improve the delivery of mosquito abatement services in Machala, Ecuador. Int. J. Health Geogr. 19, 3 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Projection of the Ecuadorian Population, per Calendar Years, by Cantons 2010–2020 (National Institute of Statistics and Census, 2012).

  • Pertumbuhan Ekonomi Indonesia Triwulan II (Badann Pusat Statistik, 2021).

  • Rašić, G. et al. Aedes aegypti has spatially structured and seasonally stable populations in Yogyakarta, Indonesia. Parasit. Vectors 8, 610 (2015).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Schmidt, T. L. et al. Genome-wide SNPs reveal the drivers of gene flow in an urban population of the Asian tiger mosquito, Aedes albopictus. PLoS Negl. Trop. Dis. 11, e0006009 (2017).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Schmidt, T. L., Filipović, I., Hoffmann, A. A. & Rašić, G. Fine-scale landscape genomics helps explain the slow spatial spread of Wolbachia through the Aedes aegypti population in Cairns, Australia. Heredity 120, 386–395 (2018).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Tantowijoyo, W. et al. Stable establishment of wMel Wolbachia in Aedes aegypti populations in Yogyakarta, Indonesia. PLoS Negl. Trop. Dis. 14, e0008157 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Telle, O. et al. The spread of dengue in an endemic urban milieu—the case of Delhi, India. PLoS ONE 11, e0146539 (2016).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Telle, O. et al. Social and environmental risk factors for dengue in Delhi city: a retrospective study. PLoS Negl. Trop. Dis. 15, e0009024 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Stokes, E. C. & Seto, K. C. Characterizing and measuring urban landscapes for sustainability. Environ. Res. Lett. 14, 045002 (2019).

    Article 

    Google Scholar 

  • Jackson-Smith, D. B. et al. Differentiating urban forms: a neighborhood typology for understanding urban water systems. Cities Environ. 9, 5 (2016).

    Google Scholar 

  • Population Census by Age (Department of Provincial Administration, accessed March 2022); https://stat.bora.dopa.go.th/new_stat/webPage/statByAge.php

  • Salje, H. et al. Revealing the microscale spatial signature of dengue transmission and immunity in an urban population. Proc. Natl Acad. Sci. USA 109, 9535–9538 (2012).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Salje, H. et al. Reconstructing unseen transmission events to infer dengue dynamics from viral sequences. Nat. Commun. 12, 1810 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Chai, B. & Seto, K. C. Conceptualizing and characterizing micro-urbanization: a new perspective applied to Africa. Landsc. Urban Plan. 190, 103595 (2019).

    Article 

    Google Scholar 

  • Zhu, G., Liu, J., Tan, Q. & Shi, B. Inferring the spatio-temporal patterns of dengue transmission from surveillance data in Guangzhou, China. PLoS Negl. Trop. Dis. 10, e0004633 (2016).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Ab Hamid, N. et al. Vertical infestation profile of Aedes in selected urban high-rise residences in Malaysia. Trop. Med. Infect. Dis. 5, 114 (2020).

    Article 
    PubMed Central 

    Google Scholar 

  • Sun, H. et al. Spatio-temporal analysis of the main dengue vector populations in Singapore. Parasit. Vectors 14, 41 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Ho, C.-M. et al. Surveillance for dengue fever vectors using ovitraps at Kaohsiung and Tainan in Taiwan. Formos. Entomol. 25, 159–174 (2005).

    Google Scholar 

  • McKenzie, D. & Ray, I. Urban water supply in India: status, reform options and possible lessons. Water Policy 11, 442–460 (2009).

    Article 

    Google Scholar 

  • Qian, S. S., Cuffney, T. F., Alameddine, I., McMahon, G. & Reckhow, K. H. On the application of multilevel modeling in environmental and ecological studies. Ecology 91, 355–361 (2010).

    Article 
    PubMed 

    Google Scholar 

  • Parham, P. E. et al. Climate, environmental and socio-economic change: weighing up the balance in vector-borne disease transmission. Phil. Trans. R. Soc. B Biol. Sci. 370, 20130551 (2015).

    Article 

    Google Scholar 

  • Slocum, M. G., Beckage, B., Platt, W. J., Orzell, S. L. & Taylor, W. Effect of climate on wildfire size: a cross-scale analysis. Ecosystems 13, 828–840 (2010).

    Article 

    Google Scholar 

  • Chiu, C.-H., Wen, T.-H., Chien, L.-C. & Yu, H.-L. A probabilistic spatial dengue fever risk assessment by a threshold-based-quantile regression method. PLoS ONE 9, e106334 (2014).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Higuera-Mendieta, D. R., Cortés-Corrales, S., Quintero, J. & González-Uribe, C. KAP surveys and dengue control in Colombia: disentangling the effect of sociodemographic factors using multiple correspondence analysis. PLoS Negl. Trop. Dis. 10, e0005016 (2016).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Zhang, J. H., Yuan, J. & Wang, T. Direct cost of dengue hospitalization in Zhongshan, China: associations with demographics, virus types and hospital accreditation. PLoS Negl. Trop. Dis. 11, e0005784 (2017).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Tam, C. C. et al. Estimates of dengue force of infection in children in Colombo, Sri Lanka. PLoS Negl. Trop. Dis. 7, e2259 (2013).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Lee, S. & Castillo-Chavez, C. The role of residence times in two-patch dengue transmission dynamics and optimal strategies. J. Theor. Biol. 374, 152–164 (2015).

    Article 
    PubMed 

    Google Scholar 

  • Adams, B. & Kapan, D. D. Man bites mosquito: understanding the contribution of human movement to vector-borne disease dynamics. PLoS ONE 4, e6763 (2009).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Colizza, V. & Vespignani, A. Epidemic modeling in metapopulation systems with heterogeneous coupling pattern: theory and simulations. J. Theor. Biol. 251, 450–467 (2008).

    Article 
    PubMed 

    Google Scholar 

  • Otero, M., Schweigmann, N. & Solari, H. G. A stochastic spatial dynamical model for Aedes aegypti. Bull. Math. Biol. 70, 1297–1325 (2008).

    Article 
    PubMed 

    Google Scholar 

  • Otero, M. & Solari, H. G. Stochastic eco-epidemiological model of dengue disease transmission by Aedes aegypti mosquito. Math. Biosci. 223, 32–46 (2010).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Li, X. & Liu, X. Embedding sustainable development strategies in agent‐based models for use as a planning tool. Int. J. Geogr. Inf. Sci. 22, 21–45 (2008).

    Article 

    Google Scholar 

  • Mozaffaree Pour, N. & Oja, T. Urban expansion simulated by integrated cellular automata and agent-based models; an example of Tallinn, Estonia. Urban Sci. 5, 85 (2021).

    Article 

    Google Scholar 

  • Gilbert, N. Agent-Based Models Vol. 153 (Sage Publications, 2019).

  • Roster, K. & Rodrigues, F. A. Neural networks for dengue prediction: a systematic review. Preprint at https://arxiv.org/abs/2106.12905 (2021).

  • Zhao, N. et al. Machine learning and dengue forecasting: comparing random forests and artificial neural networks for predicting dengue burden at national and sub-national scales in Colombia. PLoS Negl. Trop. Dis. 14, e0008056 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Zhai, Y. et al. Simulating urban land use change by integrating a convolutional neural network with vector-based cellular automata. Int. J. Geogr. Inf. Sci. 34, 1475–1499 (2020).

    Article 

    Google Scholar 

  • Verma, D. & Jana, A. LULC classification methodology based on simple Convolutional Neural Network to map complex urban forms at finer scale: evidence from Mumbai. Preprint at https://arxiv.org/abs/1909.09774 (2019).

  • Djenontin, I. N. S. & Meadow, A. M. The art of co-production of knowledge in environmental sciences and management: lessons from international practice. Environ. Manag. 61, 885–903 (2018).

    Article 

    Google Scholar 

  • Meschede, C. & Mainka, A. Including citizen participation formats for drafting and implementing local sustainable development strategies. Urban Sci. 4, 13 (2020).

    Article 

    Google Scholar 

  • Mansfield, R. G., Batagol, B. & Raven, R. “Critical agents of change?”: opportunities and limits to children’s participation in urban planning. J. Plan. Lit. 36, 170–186 (2021).

    Article 

    Google Scholar 

  • Curtis, A., Quinn, M., Obenauer, J. & Renk, B. M. Supporting local health decision making with spatial video: dengue, Chikungunya and Zika risks in a data poor, informal community in Nicaragua. Appl. Geogr. 87, 197–206 (2017).

    Article 

    Google Scholar 

  • Norström, A. V. et al. Principles for knowledge co-production in sustainability research. Nat. Sustain. 3, 182–190 (2020).

    Article 

    Google Scholar 

  • Dickens, L. & Butcher, M. Going public? Re‐thinking visibility, ethics and recognition through participatory research praxis. Trans. Inst. Br. Geogr. 41, 528–540 (2016).

    Article 

    Google Scholar 

  • Wallerstein, N. et al. Power dynamics in community-based participatory research: a multiple-case study analysis of partnering contexts, histories, and practices. Health Educ. Behav. 46, 19S–32S (2019).

    Article 
    PubMed 

    Google Scholar 

  • Parra, C. et al. Synergies between technology, participation, and citizen science in a community-based dengue prevention program. Am. Behav. Sci. 64, 1850–1870 (2020).

    Article 

    Google Scholar 

  • Lozano–Fuentes, S. et al. Cell phone-based system (Chaak) for surveillance of immatures of dengue virus mosquito vectors. J. Med. Entomol. 50, 879–889 (2013).

    Article 
    PubMed 

    Google Scholar 

  • Kelvin, A. A. et al. ZIKATracker: a mobile app for reporting cases of ZIKV worldwide. J. Infect. Dev. Ctries. 10, 113–115 (2016).

    Article 
    PubMed 

    Google Scholar 

  • Fernandez, M. P. et al. Usability and feasibility of a smartphone app to assess human behavioral factors associated with tick exposure (The Tick App): quantitative and qualitative study. JMIR mHealth uHealth 7, e14769 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Hamer, S. A., Curtis-Robles, R. & Hamer, G. L. Contributions of citizen scientists to arthropod vector data in the age of digital epidemiology. Curr. Opin. Insect Sci. 28, 98–104 (2018).

    Article 
    PubMed 

    Google Scholar 

  • Van Leeuwen, J. P., Hermans, K., Jylhä, A., Quanjer, A. J. & Nijman, H. Effectiveness of virtual reality in participatory urban planning: a case study. In Proc. Media Architecture Biennale 128–136 (Association for Computing Machinery, 2018).

  • Kahila-Tani, M. Reshaping the Planning Process Using Local Experiences: Utilising PPGIS in Participatory Urban Planning. PhD thesis, Aalto Univ. (2015).

  • Iwaniec, D. M. et al. The co-production of sustainable future scenarios. Landsc. Urban Plan. 197, 103744 (2020).

    Article 

    Google Scholar 

  • Dickin, S. K., Schuster-Wallace, C. J. & Elliott, S. J. Mosquitoes & vulnerable spaces: mapping local knowledge of sites for dengue control in Seremban and Putrajaya Malaysia. Appl. Geogr. 46, 71–79 (2014).

    Article 

    Google Scholar 

  • Chircop, A., Bassett, R. & Taylor, E. Evidence on how to practice intersectoral collaboration for health equity: a scoping review. Crit. Public Health 25, 178–191 (2015).

    Article 

    Google Scholar 

  • Gamache, S., Diallo, T. A., Shankardass, K. & Lebel, A. The elaboration of an intersectoral partnership to perform health impact assessment in urban planning: the experience of Quebec City (Canada). Int. J. Environ. Res. Public Health 17, 7556 (2020).

    Article 
    PubMed Central 

    Google Scholar 

  • Herdiana, H., Sari, J. F. K. & Whittaker, M. Intersectoral collaboration for the prevention and control of vector borne diseases to support the implementation of a global strategy: a systematic review. PLoS ONE 13, e0204659 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Lee, S. A., Economou, T., de Castro Catão, R., Barcellos, C. & Lowe, R. The impact of climate suitability, urbanisation, and connectivity on the expansion of dengue in 21st century Brazil. PLoS Negl. Trop. Dis. 15, e0009773 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Johansson, M. A., Cummings, D. A. & Glass, G. E. Multiyear climate variability and dengue—El Nino southern oscillation, weather, and dengue incidence in Puerto Rico, Mexico, and Thailand: a longitudinal data analysis. PLoS Med. 6, e1000168 (2009).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Barrera, R., Amador, M. & MacKay, A. J. Population dynamics of Aedes aegypti and dengue as influenced by weather and human behavior in San Juan, Puerto Rico. PLoS Negl. Trop. Dis. 5, e1378 (2011).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Hess, G. Disease in metapopulation models: implications for conservation. Ecology 77, 1617–1632 (1996).

    Article 

    Google Scholar 

  • Hanski, I. Metapopulation dynamics: does it help to have more of the same? Trends Ecol. Evol. 4, 113–114 (1989).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Masui, H. et al. Assessing potential countermeasures against the dengue epidemic in non-tropical urban cities. Theor. Biol. Med. Model. 13, 12 (2016).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Stone, C. M., Schwab, S. R., Fonseca, D. M. & Fefferman, N. H. Contrasting the value of targeted versus area-wide mosquito control scenarios to limit arbovirus transmission with human mobility patterns based on different tropical urban population centers. PLoS Negl. Trop. Dis. 13, e0007479 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • O’Reilly, K. M. et al. Projecting the end of the Zika virus epidemic in Latin America: a modelling analysis. BMC Med. 16, 180 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Santé, I., García, A. M., Miranda, D. & Crecente, R. Cellular automata models for the simulation of real-world urban processes: a review and analysis. Landsc. Urban Plan. 96, 108–122 (2010).

    Article 

    Google Scholar 

  • Yang, J., Gong, J., Tang, W. & Liu, C. Patch-based cellular automata model of urban growth simulation: integrating feedback between quantitative composition and spatial configuration. Comput. Environ. Urban Syst. 79, 101402 (2020).

    Article 

    Google Scholar 

  • Rozos, E., Butler, D. & Makropoulos, C. An integrated system dynamics–cellular automata model for distributed water-infrastructure planning. Water Sci. Technol. Water Supply 16, 1519–1527 (2016).

    Article 

    Google Scholar 

  • Enduri, M. K. & Jolad, S. Dynamics of dengue disease with human and vector mobility. Spat. Spatiotemporal Epidemiol. 25, 57–66 (2018).

    Article 
    PubMed 

    Google Scholar 

  • Medeiros, L. C. et al. Modeling the dynamic transmission of dengue fever: investigating disease persistence. PLoS Negl. Trop. Dis. 5, e942 (2011).

    Article 
    PubMed Central 

    Google Scholar 

  • Ali, A. M., Shafiee, M. E. & Berglund, E. Z. Agent-based modeling to simulate the dynamics of urban water supply: climate, population growth, and water shortages. Sustain. Cities Soc. 28, 420–434 (2017).

    Article 

    Google Scholar 

  • Philippon, D. et al. in Multi-Agent Based Simulation XVII. MABS 2016. Lecture Notes in Computer Science Vol 10399 (eds Nardin, L. & Antunes, L.) 111–127 (Springer, 2016).

  • Agyemang, F. S., Silva, E. & Fox, S.Modelling and simulating ‘informal urbanization’: an integrated agent-based and cellular automata model of urban residential growth in Ghana. Urban Anal. City Sci. 0, 1–15 (2022).

    Google Scholar 

  • Chouhan, S. S., Kaul, A. & Singh, U. P. Image segmentation using computational intelligence techniques. Arch. Comput. Methods Eng. 26, 533–596 (2019).

    Article 

    Google Scholar 

  • Andersson, V. O., Birck, M. A. F. & Araujo, R. M. Towards predicting dengue fever rates using convolutional neural networks and street-level images. Proc. 2018 Int. Jt Conf. Neural Netw. 1–8 (IEEE, 2018).

  • Chrysler, A., Gunarso, R., Puteri, T. & Warnars, H. A Literature Review of Crowd-Counting System on Convolutional Neural Network 012029 (IOP Conference Series: Earth and Environmental Science Volume 729, IOP Publishing, 2021).

  • Bharambe, A., Chandorkar, A. A. & Kalbande, D. A deep learning approach for dengue tweet classification. Proc. 3rd Int. Conf. Invent. Res. Comput. Appl. 1043–1047 (IEEE, 2021).

  • Kumar, A. & Garg, G. Sentiment analysis of multimodal twitter data. Multimed. Tools Appl. 78, 24103–24119 (2019).

    Article 

    Google Scholar 

  • Marin, A. & Wellman, B. in The SAGE Handbook of Social Network Analysis Ch. 2 (2011).

  • Snijders, T. A. & Steglich, C. E. Representing micro–macro linkages by actor-based dynamic network models. Sociol. Methods Res. 44, 222–271 (2015).

    Article 
    PubMed 

    Google Scholar 

  • Warren, C. R., Burton, R., Buchanan, O. & Birnie, R. V. Limited adoption of short rotation coppice: the role of farmers’ socio-cultural identity in influencing practice. J. Rural Stud. 45, 175–183 (2016).

    Article 

    Google Scholar 

  • Beal Cohen, A. A., Muneepeerakul, R. & Kiker, G. Intra-group decision-making in agent-based models. Sci. Rep. 11, 17709 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Frederiks, E. R., Stenner, K. & Hobman, E. V. Household energy use: applying behavioural economics to understand consumer decision-making and behaviour. Renew. Sustain. Energy Rev. 41, 1385–1394 (2015).

    Article 

    Google Scholar 

  • Spiegel, J. et al. Barriers and bridges to prevention and control of dengue: the need for a social–ecological approach. EcoHealth 2, 273–290 (2005).

    Article 

    Google Scholar 

  • Arellano, C. et al. Knowledge and beliefs about dengue transmission and their relationship with prevention practices in Hermosillo, Sonora. Front. Public Health 3, 142 (2015).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Gertler, M. S. & Wolfe, D. A. Local social knowledge management: community actors, institutions and multilevel governance in regional foresight exercises. Futures 36, 45–65 (2004).

    Article 

    Google Scholar 

  • Brown, R. R., Farrelly, M. A. & Loorbach, D. A. Actors working the institutions in sustainability transitions: the case of Melbourne’s stormwater management. Glob. Environ. Change 23, 701–718 (2013).

    Article 

    Google Scholar 

  • Castilla-Rho, J. C., Mariethoz, G., Rojas, R., Andersen, M. S. & Kelly, B. F. An agent-based platform for simulating complex human–aquifer interactions in managed groundwater systems. Environ. Model. Softw. 73, 305–323 (2015).

    Article 

    Google Scholar 

  • Sabatier, P. A. Toward better theories of the policy process. PS Polit. Sci. Polit. 24, 147–156 (1991).

    Article 

    Google Scholar 

  • Abrantes, P. et al. Modelling urban form: a multidimensional typology of urban occupation for spatial analysis. Environ. Plan. B Urban Anal. City Sci. 46, 47–65 (2019).

    Article 

    Google Scholar 

  • McGarigal, K. FRAGSTATS: Spatial Pattern Analysis Program for Quantifying Landscape Structure Vol. 351 (US Department of Agriculture, Forest Service, Pacific Northwest Research Station, 1995).

  • Vazquez-Prokopec, G. M. et al. Using GPS technology to quantify human mobility, dynamic contacts and infectious disease dynamics in a resource-poor urban environment. PLoS ONE 8, e58802 (2013).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Ligtenberg, A., van Lammeren, R. J., Bregt, A. K. & Beulens, A. J. Validation of an agent-based model for spatial planning: a role-playing approach. Comput. Environ. Urban Syst. 34, 424–434 (2010).

    Article 

    Google Scholar 


  • Source: Ecology - nature.com

    Coordinating climate and air-quality policies to improve public health

    Pesticide innovation takes top prize at Collegiate Inventors Competition