in

Bryozoan–cnidarian mutualism triggered a new strategy for greater resource exploitation as early as the Late Silurian

  • Pushkin, V. I., Nehkorosheva, L. V., Kopaevich, G. V. & Yaroshinskaya, A. M. Přídolian Bryozoa of the USSR 1–125 (Nauka, 1990) (in Russian).

    Google Scholar 

  • Kopaevich, G. V. Silurian Bryozoa of Estonia and Podolia (Cryptostomata and Rhabdomesonata). Trudy Paleontol. Inst Akad. Nauk SSSR 151, 5–153 (1975) (in Russian).

    Google Scholar 

  • Tuckey, M. E. Biogeography of Ordovician bryozoans. Palaeogeogr. Palaeoclimatol. Palaeoecol. 77, 91–126 (1990).

    Article 

    Google Scholar 

  • McCoy, V. E. & Anstey, R. L. Biogeographic associations of Silurian bryozoan genera in North America, Baltica and Siberia. Palaeogeogr. Palaeoclimatol. Palaeoecol. 297, 420–427 (2010).

    Article 

    Google Scholar 

  • Bassler, R. S. The early Paleozoic Bryozoa of the Baltic provinces. Bull. U. S. Natl. Museum 77, 1–382 (1911).

    Google Scholar 

  • Vinn, O. & Wilson, M. A. Symbiotic interactions in the Silurian of Baltica. Lethaia 49, 413–420 (2016).

    Article 

    Google Scholar 

  • Vinn, O. Symbiotic interactions in the Silurian of North America. Hist. Biol. 29, 341–347 (2017).

    Article 

    Google Scholar 

  • Vinn, O., Ernst, A., Wilson, M. A. & Toom, U. Symbiosis of cornulitids with the cystoporate bryozoan Fistulipora in the Přídolí of Saaremaa, Estonia. Lethaia 54, 90–95 (2021).

    Article 

    Google Scholar 

  • Vinn, O., Ernst, A., Wilson, M. A. & Toom, U. Intergrowth of bryozoans with other invertebrates in the late Přídolí of Saaremaa, Estonia. Ann. Soc. Geol. Poloniae 91, 101–111 (2021).

    Google Scholar 

  • Jackson, J. B. C. & Buss, L. Allelopathy and spatial competition among coral reef invertebrates. Proc. Natl. Acad. Sci. USA 72, 5160–5163 (1975).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Osman, R. W. & Haugsness, J. A. Mutualism among sessile invertebrates: A mediator of competition and predation. Science 211(4484), 846–848 (1981).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Pawlik, J. R. Marine invertebrate chemical defenses. Chem. Rev. 93, 1911–1922 (1993).

    CAS 
    Article 

    Google Scholar 

  • Figuerola, B., Núñez-Pons, L., Moles, J. & Avila, C. Feeding repellence in Antarctic bryozoans. Naturwissenschaften 100, 1069–1081 (2013).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Puce, S., Bavestrello, G., Di Camillo, C. G. & Boero, F. Symbiotic relationships between hydroids and bryozoans. Symbiosis 44, 137–143 (2007).

    Google Scholar 

  • López-Gappa, J. & Liuzzi, M. G. An unusual symbiotic relationship between a cyclostome bryozoan and a thecate hydroid. Symbiosis 85, 217–223 (2021).

    Article 
    CAS 

    Google Scholar 

  • McKinney, F. K., Broadhead, T. W. & Gibson, M. A. Coral-bryozoan mutualism: Structural innovation and greater resource exploitation. Science 248(4954), 466–468 (1990).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 

  • McKinney, F. K. Bryozoan-hydroid symbiosis and a new ichnogenus, Caupokeras. Ichnos 16, 193–201 (2009).

    Article 

    Google Scholar 

  • Suárez-Andrés, J. L., Sendino, C. & Wilson, M. A. Life in a living substrate: Modular endosymbionts of bryozoan hosts from the Devonian of Spain. Palaeogeogr. Palaeoclimatol. Palaeoecol. 559, 109897 (2020).

    Article 

    Google Scholar 

  • Okamura, B. The influence of neighbors on the feeding of an epifaunal bryozoan. J. Exp. Mar. Biol. Ecol. 120, 105–123 (1988).

    Article 

    Google Scholar 

  • Sendino, C., Suárez-Andrés, J. L. S. & Wilson, M. A. A rugose coral–bryozoan association from the Lower Devonian of NW Spain. Palaeogeogr. Palaeoclimatol. Palaeoecol. 530, 271–280 (2019).

    Article 

    Google Scholar 

  • Suárez-Andrés, J., Sendino, C. & Wilson, M. A. Caupokeras badalloi, a new ichnospecies of impedichnia from the Lower Devonian of Spain. Palaeoecological significance. Hist. Biol. 34, 62–66 (2021).

    Article 

    Google Scholar 

  • Vinn, O., Ernst, A., Wilson, M. A. & Toom, U. Symbiosis of conulariids with trepostome bryozoans in the Upper Ordovician of Estonia (Baltica). Palaeogeogr. Palaeoclimatol. Palaeoecol. 518, 89–96 (2019).

    Article 

    Google Scholar 

  • Melchin, M. J., Cooper, R. A. & Sadler, P. M. The Silurian period. In A Geologic Time Scale 2004 (eds Gradstein, F. M. et al.) 188–201 (Cambridge University Press, 2004).

    Google Scholar 

  • Torsvik, T. H. & Cocks, L. R. M. New global palaeogeographical reconstructions for the Early Palaeozoic and their generation. Geol. Soc. Lond. Memoirs 38, 5–24 (2013).

    Article 

    Google Scholar 

  • Hints, O. The Silurian system in Estonia. in The Seventh Baltic Stratigraphical Conference. Abstracts and Field Guide (Hints, O. Ainsaar, L. Männik, P. & Meidla, T. eds.). 1–46. (Geological Society of Estonia, 2008).

  • Nestor, H. & Einasto, R. Facies-sedimentary model of the Silurian Paleobaltic pericontinental basin. in (Kaljo, D. ed.) Facies and Fauna of the Baltic Silurian. 89–121 (Academy of Sciences of the Estonian S. S. R. Institute of Geology, 1977) (in Russian, English summary).

  • Nestor, H. & Einasto, R. Ordovician and Silurian carbonate sedimentation basin. In Geology and Mineral Resources of Estonia (eds Raukas, A. & Teedumäe, A.) 192–205 (Estonian Academy Publishers, 1997).

    Google Scholar 

  • Nestor, H. Locality 7: 4 Ohesaare cliff. in Field Meeting, Estonia 1990. An Excursion Guidebook (Kaljo, D. & Nestor, H. eds.). 175–178. (Institute of Geology, Estonian Academy of Sciences, 1990).

  • Klaamann, E. R. Tabulate corals of the Upper Silurian of Estonia. Trudy Inst. Gieol. AN Estonskoi SSR 9, 25–74 (1962) (in Russian).

    Google Scholar 

  • Hill, D. Tabulata. in Treatise on Invertebrate Paleontology, Part F, Coelenterate, Supplement 1, Rugosa and Tabulata (Teichert, C. ed.). F430–F762 (The Geological Society of America, Inc./The University of Kansas, 1981).

  • Zapalski, M. K. Tabulate corals from the Givetian and Frasnian of the southern region of the Holy Cross Mountains (Poland). Spec. Pap. Palaeontol. 87, 1–100 (2012).

    Google Scholar 

  • Stasińska, A. Colony structure and systematic assignment of Cladochonus tenuicollis McCoy, 1847 (Hydroidea). Acta Palaeontol. Pol. 27, 59–64 (1982).

    Google Scholar 

  • Król, J., Zapalski, M. K. & Berkowski, B. Emsian tabulate corals of Hamar Laghdad (Morocco): Taxonomy and ecological interpretation. Neues Jahrbuch Geol. Palaontol.-Abhandlungen 290, 75–102 (2018).

    Article 

    Google Scholar 

  • Coronado, I. Biomineral analysis of the enigmatic fossil Cladochonus Mccoy, 1847: A representative of calcifiying hydrozoa? In New Perspectives on the Evolution of Phanerozoic Biotas and Ecosystems (Manzanares, E. et al. eds.). Vol. 24.

  • Bouillon, J., Gravili, C., Gili, J. M. & Boero, F. An Introduction to Hydrozoa (ResearchGate, 2006).

    Google Scholar 

  • Tassia, M. G. et al. The global diversity of Hemichordata. PLoS ONE 11(10), e0162564 (2016).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • Zapalski, M. K. & Clarkson, E. N. Enigmatic fossils from the Lower Carboniferous shrimp bed, Granton, Scotland. PLoS ONE 10(12), e0144220 (2015).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • Sato, A. Seasonal reproductive activity in the pterobranch hemichordate Rhabdopleura compacta. J. Mar. Biol. Assoc. UK 88, 1033–1041 (2008).

    Article 

    Google Scholar 

  • Underwood, C. J. Graptolite preservation and deformation. Palaios 7, 178–186 (1992).

    ADS 
    Article 

    Google Scholar 

  • Maletz, J. Hemichordata (Enteropneusta & Pterobranchia, incl. Graptolithina): A review of their fossil preservation as organic material. Bull. Geosci. 95(1), 41–80 (2020).

    Article 

    Google Scholar 

  • Tapanila, L. Direct evidence of ancient symbiosis using trace fossils. Paleontol. Soc. Pap. 14, 271–287 (2008).

    Article 

    Google Scholar 

  • Zapalski, M. K. Is absence of proof a proof of absence? Comments on commensalism. Palaeogeogr. Palaeoclimatol. Palaeoecol. 302, 484–488 (2011).

    Article 

    Google Scholar 

  • Mathis, K. A. & Bronstein, J. L. Our current understanding of commensalism. Annu. Rev. Ecol. Evol. Syst. 51, 167–189 (2020).

    Article 

    Google Scholar 

  • Zapalski, M. K., Berkowski, B. & Klug, C. Subepidermal Emsian” auloporids” on crinoids from Hamar Laghdad (Anti-Atlas, Morocco). N. Jb. Geol. Paläont. 290, 103–110 (2018).

    Article 

    Google Scholar 

  • Winston, J. E. Feeding in marine bryozoans. In Biology of Bryozoans (eds Wollacott, W. S. & Zimmer, R. L.) 233–271 (Academic Press, 1977).

    Chapter 

    Google Scholar 

  • Okamura, B. & Partridge, J. C. Suspension feeding adaptations to extreme flow environments in a marine bryozoan. Biol. Bull. 196, 205–215 (1999).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Ernst, A. Fossil Record and Evolution of Bryozoa. Handbook of Zoology. Bryozoa 11–55 (De Gruyter, 2020).

    Google Scholar 

  • Riisgård, H. U. & Manríquez, P. Filter-feeding in fifteen marine ectoprocts (Bryozoa): Particle capture and water pumping. Mar. Ecol. Prog. Ser. 154, 223–239 (1997).

    ADS 
    Article 

    Google Scholar 

  • Boero, F. & Hewitt, C. L. A hydrozoan, Zanclella bryozoophila n. gen, n.sp. (Zancleidae) symbiotic with a bryozoan, and a discussion of the Zancleidae. Can. J. Zool. 70, 1645–1651 (1992).

    Article 

    Google Scholar 

  • Piraino, S., Bouillon, J. & Boero, F. Halocoryne epizoica (Cnidaria, Hydrozoa), a hydroid that “bites”. Sci. Mar. 56(2), 141–147 (1992).

    Google Scholar 

  • Maggioni, D. et al. Evolution and biogeography of the Zanclea-Scleractinia symbiosis. Coral Reefs 12, 1–17 (2020).

    Google Scholar 

  • Taylor, P. D. Competition between encrusters on marine hard substrates and its fossil record. Palaeontology 59, 481–497 (2016).

    Article 

    Google Scholar 

  • Taylor, P. D. & Wilson, M. A. Palaeoecology and evolution of marine hard substrate communities. Earth Sci. Rev. 62, 1–103 (2003).

    ADS 
    Article 

    Google Scholar 

  • Gordon, D. P. Biological relationships of an intertidal bryozoan population. J. Nat. Hist. 6, 503–514 (1972).

    Article 

    Google Scholar 

  • Jackson, J. B. C. & Winston, J. E. Ecology of cryptic coral reef communities. I. Distribution and abundance of major groups of encrusting organisms. J. Exp. Mar. Biol. Ecol. 57, 135–147 (1982).

    Article 

    Google Scholar 

  • McKinney, F. K. & Jackson, J. B. C. Bryozoan Evolution 238 (Unwin Hyman, 1989).

    Google Scholar 

  • Wicander, R. & Playford, G. Acritarchs and prasinophytes from the Lower Devonian (Lochkovian) Ross Formation, Tennessee, USA: Stratigraphic and paleogeographic distribution. Palynology 46(2), 1–50 (2022).

    Article 

    Google Scholar 

  • Ristedt, H. & Schuhmacher, H. The bryozoan Rhynchozoon larreyi (Audouin, 1826)—A successful competitor in coral reef communities of the Red Sea. Mar. Ecol. 6, 167–179 (1985).

    ADS 
    Article 

    Google Scholar 

  • Puce, S., Cerrano, C., Di Camillo, C. & Bavestrello, G. Hydroidomedusae (Cnidaria: Hydrozoa) symbiotic radiation. J. Mar. Biol. Assoc. U.K. 88(8), 1715–1721 (2008).

    Article 

    Google Scholar 

  • Winston, J. E. & Migotto, A. E. Behavior. In Phylum Bryozoa (ed. Schwaha, T.) 143–187 (De Gruyter, 2020).

    Chapter 

    Google Scholar 

  • Cadée, G. C. & McKinney, F. K. A coral-bryozoan association from the Neogene of northwestern Europe. Lethaia 27, 59–66 (1994).

    Article 

    Google Scholar 

  • Jackson, P. N. W. & Key, M. M. Jr. Borings in trepostome bryozoans from the Ordovician of Estonia: Two ichnogenera produced by a single maker, a case of host morphology control. Lethaia 40, 237–252 (2007).

    Article 

    Google Scholar 

  • Jackson, P. N. W. & Key, M. M. Epizoan and endoskeletozoan distribution across reassembled ramose stenolaemate bryozoan zoaria from the Upper Ordovician (Katian) of the Cincinnati Arch region, USA. Aust. Palaeontol. Memoirs 52, 169–178 (2019).

    Google Scholar 

  • Ma, J., Taylor, P. D. & Buttler, C. J. Sclerobionts associated with Orbiramus from the Early Ordovician of Hubei, China, the oldest known trepostome bryozoan. Lethaia 54, 443–456 (2020).

    Google Scholar 

  • Bambach, R. K., Bush, A. M. & Erwin, D. H. Autecology and the filling of ecospace: Key metazoan radiations. Palaeontology 50, 1–22 (2007).

    Article 

    Google Scholar 

  • Vinn, O., Ernst, A. & Toom, U. Symbiosis of cornulitids and bryozoans in the Late Ordovician of Estonia (Baltica). Palaios 33, 290–295 (2018).

    ADS 
    Article 

    Google Scholar 

  • Palmer, T. J. & Wilson, M. A. Parasitism of Ordovician bryozoans and the origin of pseudoborings. Palaeontology 31, 939–949 (1988).

    Google Scholar 

  • Ernst, A. Trepostome and cryptostome bryozoans from the Koněprusy Limestone (Lower Devonia, Pragian) of Zlatý Kůň (Czech republic). Riv. Ital. Paleontol. Stratigr. 114(3), 329–348 (2008).

    Google Scholar 

  • Morozova, I. P. Devonskie mshanki Minusinskikh i Kuznetskoy kotlovin. Trudy Paleontol. Inst. Akad. Nauk SSSR 86, 1–207 (1961) (in Russian).

    Google Scholar 


  • Source: Ecology - nature.com

    Cracking the carbon removal challenge

    Evaluation of animal and plant diversity suggests Greenland’s thaw hastens the biodiversity crisis