Corlett, R. T. The Anthropocene concept in ecology and conservation. Trends Ecol. Evol. 30, 36–41 (2015).
Google Scholar
IPBES. Summary for Policymakers of the Global Assessment Report on Biodiversity and Ecosystem Services of the Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem Services (IPBES Secretariat, 2019).
Vitousek, P. M. Human domination of Earth’s ecosystems. Science 277, 494–499 (1997).
Google Scholar
Wong, B. B. M. & Candolin, U. Behavioral responses to changing environments. Behav. Ecol. 26, 665–673 (2015).
Hale, R. & Swearer, S. E. Ecological traps: Current evidence and future directions. Proc. R. Soc. B Biol. Sci. 283, 1–8 (2016).
Charman, T. G., Sears, J., Green, R. E. & Bourke, A. F. G. Conservation genetics, foraging distance and nest density of the scarce Great Yellow Bumblebee (Bombus distinguendus). Mol. Ecol. 19, 2661–2674 (2010).
Google Scholar
Violle, C. et al. Let the concept of trait be functional!. Oikos 116, 882–892 (2007).
Husemann, M., Zachos, F. E., Paxton, R. J. & Habel, J. C. Effective population size in ecology and evolution. Heredity 117, 191–192 (2016).
Google Scholar
Wagner, D. L. Insect declines in the Anthropocene. Annu. Rev. Entomol. 65, 457–480 (2020).
Google Scholar
Goulson, D., Nicholls, E., Botías, C. & Rotheray, E. L. Bee declines driven by combined stress from parasites, pesticides, and lack of flowers. Science 347, 1255957 (2015).
Google Scholar
Thogmartin, W. E. et al. Monarch butterfly population decline in North America: Identifying the threatening processes. R. Soc. Open Sci. 4, 170760 (2017).
Google Scholar
Cameron, S. A. et al. Patterns of widespread decline in North American bumble bees. Proc. Natl. Acad. Sci. U.S.A. 108, 662–667 (2011).
Google Scholar
Burkle, L. A., Marlin, J. C. & Knight, T. M. Plant-pollinator interactions over 120 years: Loss of species, co-occurrence, and function. Science 340, 1611–1615 (2013).
Google Scholar
Grixti, J. C., Wong, L. T., Cameron, S. A. & Favret, C. Decline of bumble bees (Bombus) in the North American Midwest. Biol. Conserv. 142, 75–84 (2009).
Goulson, D. Bumblebees: Behaviour, Ecology, and Conservation (Oxford University Press, Oxford, 2010).
Colla, S. R., Gadallah, F., Richardson, L., Wagner, D. & Gall, L. Assessing declines of North American bumble bees (Bombus spp.) using museum specimens. Biodivers. Conserv. 21, 3585–3595 (2012).
Hatfield, R. et al. IUCN assessments of North American Bombus spp. http://www.xerces.org/ (2015).
Arbetman, M. P., Gleiser, G., Morales, C. L., Williams, P. & Aizen, M. A. Global decline of bumblebees is phylogenetically structured and inversely related to species range size and pathogen incidence. Proc. R. Soc. B Biol. Sci. 284, 20170204 (2017).
Bommarco, R. et al. Dispersal capacity and diet breadth modify the response of wild bees to habitat loss. Proc. R. Soc. B Biol. Sci. 277, 2075–2082 (2010).
Hall, D. M. et al. The city as a refuge for insect pollinators. Conserv. Biol. 31, 24–29 (2017).
Google Scholar
Banaszak-Cibicka, W. & Żmihorski, M. Wild bees along an urban gradient: Winners and losers. J. Insect Conserv. 16, 331–343 (2012).
Wilson, C. J. & Jamieson, M. A. The effects of urbanization on bee communities depends on floral resource availability and bee functional traits. PLoS One 14, e0225852 (2019).
Google Scholar
Thompson, M.J., Capilla-Lasheras, P.C., Dominoni, D.M., Réale, D. & Charmantier, A. Phenotypic variation in urban environments: mechanisms and implications. Trends Ecol. Evol. 37, 171–182 (2022).
Google Scholar
Peat, J., Tucker, J. & Goulson, D. Does intraspecific size variation in bumblebees allow colonies to efficiently exploit different flowers?. Ecol. Entomol. 30, 176–181 (2005).
Greenleaf, S. S., Williams, N. M., Winfree, R. & Kremen, C. Bee foraging ranges and their relationship to body size. Oecologia 153, 589–596 (2007).
Google Scholar
Spaethe, J. & Weidenmüller, A. Size variation and foraging rate in bumblebees (Bombus terrestris). Insectes Soc. 49, 142–146 (2002).
Couvillon, M. J. & Dornhaus, A. Small worker bumble bees (Bombus impatiens) are hardier against starvation than their larger sisters. Insectes Soc. 57, 193–197 (2010).
Google Scholar
Pendrel, B. A. & Plowright, R. C. Larval feeding by adult bumble bee workers (Hymenoptera: Apidae). Behav. Ecol. Sociobiol. 8, 71–76 (1981).
Sutcliffe, G. H. & Plowright, R. C. The effects of food supply on adult size in the bumble bee Bombus terricola Kirby (Hymenoptera: Apidae). Can. Entomol. 120, 1051–1058 (1988).
Couvillon, M. J. & Dornhaus, A. Location, location, location: Larvae position inside the nest is correlated with adult body size in worker bumble-bees (Bombus impatiens). Proc. R. Soc. B Biol. Sci. 276, 2411–2418 (2009).
Bartomeus, I. et al. Historical changes in northeastern US bee pollinators related to shared ecological traits. Proc. Natl. Acad. Sci. U.S.A. 110, 4656–4660 (2013).
Google Scholar
Austin, M. W. & Dunlap, A. S. Intraspecific variation in worker body size makes North American bumble bees (Bombus spp.) less susceptible to decline. Am. Nat. 194, 381–394 (2019).
Google Scholar
Watters, J. V., Lema, S. C. & Nevitt, G. A. Phenotype management: A new approach to habitat restoration. Biol. Conserv. 112, 435–445 (2003).
Haddaway, N. R., Mortimer, R. J. G., Christmas, M., Grahame, J. W. & Dunn, A. M. Morphological diversity and phenotypic plasticity in the threatened British white-clawed crayfish (Austropotamobius pallipes). Aquat. Conserv. Mar. Freshw. Ecosyst. 22, 220–231 (2012).
Lema, S. C. & Nevitt, G. A. Testing an ecophysiological mechanism of morphological plasticity in pupfish and its relevance to conservation efforts for endangered Devils Hole pupfish. J. Exp. Biol. 209, 3499–3509 (2006).
Google Scholar
Crispo, E. Modifying effects of phenotypic plasticity on interactions among natural selection, adaptation and gene flow. J. Evol. Biol. 21, 1460–1469 (2008).
Google Scholar
Fraser, D. J. & Bernatchez, L. Adaptive evolutionary conservation: Towards a unified concept for defining conservation units. Mol. Ecol. 10, 2741–2752 (2001).
Google Scholar
Nicotra, A. B. et al. Plant phenotypic plasticity in a changing climate. Trends Plant Sci. 15, 684–692 (2010).
Google Scholar
Spielman, D., Brook, B. W. & Frankham, R. Most species are not driven to extinction before genetic factors impact them. Proc. Natl. Acad. Sci. U.S.A. 101, 15261–15264 (2004).
Google Scholar
Woodard, S. H. et al. Molecular tools and bumble bees: Revealing hidden details of ecology and evolution in a model system. Mol. Ecol. 24, 2916–2936 (2015).
Google Scholar
Lozier, J. D., Strange, J. P., Stewart, I. J. & Cameron, S. A. Patterns of range-wide genetic variation in six North American bumble bee (Apidae: Bombus) species. Mol. Ecol. 20, 4870–4888 (2011).
Google Scholar
Williams, B. L., Brawn, J. D. & Paige, K. N. Landscape scale genetic effects of habitat fragmentation on a high gene flow species: Speyeria idalia (Nymphalidae). Mol. Ecol. 12, 11–20 (2003).
Google Scholar
IUCN. The IUCN Red List of Threatened Species. https://www.iucnredlist.org. Accessed 18 Dec 2019 (2019).
MacPhail, V. J., Richardson, L. L. & Colla, S. R. Incorporating citizen science, museum specimens, and field work into the assessment of extinction risk of the American Bumble bee (Bombus pensylvanicus De Geer 1773) in Canada. J. Insect Conserv. 23, 597–611 (2019).
Camilo, G. R., Muñiz, P. A., Arduser, M. S. & Spevak, E. M. A checklist of the bees (Hymenoptera: Apoidea) of St. Louis, Missouri, USA. J. Kansas Entomol. Soc. 90, 175–188 (2018).
United States Census Bureau. Land Area and Persons Per Square Mile. https://www.census.gov/quickfacts/fact/note/US/LND110210. Accessed 26 March 2020 (2010).
United States Census Bureau. City and Town Population Totals: 2010–2018. https://www.census.gov/data/tables/time-series/demo/popest/2010s-total-cities-and-towns.html. Accessed 26 March 2020 (2020).
Thompson, K. & Jones, A. Human population density and prediction of local plant extinction in Britain. Conserv. Biol. 13, 185–189 (1999).
Fontana, C. S., Burger, M. I. & Magnusson, W. E. Bird diversity in a subtropical South-American City: Effects of noise levels, arborisation and human population density. Urban Ecosyst. 14, 341–360 (2011).
Lepais, O. et al. Estimation of bumblebee queen dispersal distances using sibship reconstruction method. Mol. Ecol. 19, 819–831 (2010).
Google Scholar
Holehouse, K. A., Hammond, R. L. & Bourke, A. F. G. Non-lethal sampling of DNA from bumble bees for conservation genetics. Insectes Soc. 50, 277–285 (2003).
Williams, P. H., Thorp, R., Richardson, L. & Colla, S. R. Bumble Bees of North America (Princeton University Press, 2014).
Cane, J. H. Estimation of bee size using intertegular span (Apoidea). J. Kansas Entomol. Soc. 60, 145–147 (1987).
Walsh, P. S., Metzger, D. A. & Higuchi, R. Chelex 100 as a medium for simple extraction of DNA for PCR-based typing from forensic material. Biotechniques 10, 506–513 (1991).
Google Scholar
Estoup, A., Scholl, A., Pouvreau, A. & Solignac, M. Monoandry and polyandry in bumble bees (Hymenoptera; Bombinae) as evidenced by highly variable microsatellites. Mol. Ecol. 4, 89–94 (1995).
Google Scholar
Estoup, A., Solignac, M., Cornuet, J. M., Goudet, J. & Scholl, A. Genetic differentiation of continental and island populations of Bombus terrestris (Hymenoptera: Apidae) in Europe. Mol. Ecol. 5, 19–31 (1996).
Google Scholar
Funk, C. R., Schmid-Hempel, R. & Schmid-Hempel, P. Microsatellite loci for Bombus spp. Mol. Ecol. Notes 6, 83–86 (2006).
Google Scholar
Stolle, E. et al. Novel microsatellite DNA loci for Bombus terrestris (Linnaeus, 1758). Mol. Ecol. Resour. 9, 1345–1352 (2009).
Google Scholar
Kearse, M. et al. Geneious Basic: An integrated and extendable desktop software platform for the organization and analysis of sequence data. Bioinformatics 28, 1647–1649 (2012).
Google Scholar
Chapman, R. E. & Bourke, A. F. G. The influence of sociality on the conservation biology of social insects. Ecol. Lett. 4, 650–662 (2001).
Geib, J. C., Strange, J. P. & Galen, A. Bumble bee nest abundance, foraging distance, and host-plant reproduction: Implications for management and conservation. Ecol. Appl. 25, 768–778 (2015).
Google Scholar
Chakraborty, R., Andrade, M. D. E., Daiger, S. P. & Budowle, B. Apparent heterozygote deficiencies observed in DNA typing data and their implications in forensic applications. Ann. Hum. Genet. 56, 45–57 (1992).
Google Scholar
Gruber, B. & Adamack, A. T. PopGenReport: Simplifying basic population genetic analyses in R. Methods Ecol. Evol. 5, 384–387 (2014).
Wang, J. Sibship reconstruction from genetic data with typing errors. Genetics 166, 1963–1979 (2004).
Google Scholar
Crozier, R. H. Genetics of sociality. In Social Insects Vol. I (ed. Hermann, H. R.) 223–286 (Academic Press, 1979).
Rousset, F. genepop’007: A complete re-implementation of the genepop software for Windows and Linux. Mol. Ecol. Resour. 8, 103–106 (2008).
Google Scholar
Leberg, P. L. Estimating allelic richness: Effects of sample size and bottlenecks. Mol. Ecol. 11, 2445–2449 (2002).
Google Scholar
Goudet, J. hierfstat, a package for r to compute and test hierarchical F-statistics. Mol. Ecol. Notes 5, 184–186 (2005).
Weir, B. S. & Cockerham, C. C. Estimating F-statistics for the analysis of population structure. Evolution 38, 1358–1370 (1984).
Google Scholar
Ryman, N. & Palm, S. POWSIM: A computer program for assessing statistical power when testing for genetic differentiation. Mol. Ecol. Notes 6, 600–602 (2006).
Zayed, A. & Packer, L. High levels of diploid male production in a primitively eusocial bee (Hymenoptera: Halictidae). Heredity 87, 631–636 (2001).
Google Scholar
Darvill, B., Ellis, J. S., Lye, G. C. & Goulson, D. Population structure and inbreeding in a rare and declining bumblebee, Bombus muscorum (Hymenoptera: Apidae). Mol. Ecol. 15, 601–611 (2006).
Google Scholar
Hale, M. L., Burg, T. M. & Steeves, T. E. Sampling for microsatellite-based population genetic studies: 25 to 30 Individuals per population is enough to accurately estimate allele frequencies. PLoS One 7, e45170 (2012).
Google Scholar
Lenth, R. V. Least-squares means: The R package lsmeans. J. Stat. Softw. 69, 1–33 (2016).
Fitzpatrick, S. W. et al. Gene flow constrains and facilitates genetically based divergence in quantitative traits. Copeia 105, 462–474 (2017).
Price, T. D., Qvarnström, A. & Irwin, D. E. The role of phenotypic plasticity in driving genetic evolution. Proc. R. Soc. B Biol. Sci. 270, 1433–1440 (2003).
Liu, B.-J., Zhang, B.-D., Xue, D.-X., Gao, T.-X. & Liu, J.-X. Population structure and adaptive divergence in a high gene flow marine fish: The small yellow croaker (Larimichthys polyactis). PLoS One 11, e0154020 (2016).
Google Scholar
Vaudo, A. D., Tooker, J. F., Grozinger, C. M. & Patch, H. M. Bee nutrition and floral resource restoration. Curr. Opin. Insect Sci. 10, 133–141 (2015).
Google Scholar
Woodard, S. H. & Jha, S. Wild bee nutritional ecology: Predicting pollinator population dynamics, movement, and services from floral resources. Curr. Opin. Insect Sci. 21, 83–90 (2017).
Google Scholar
Keller, L. F. & Waller, D. M. Inbreeding effects in wild populations. Trends Ecol. Evol. 17, 230–241 (2002).
Sivakoff, F. S. & Gardiner, M. M. Soil lead contamination decreases bee visit duration at sunflowers. Urban Ecosyst. 20, 1221–1228 (2017).
Whitehorn, P. R., Norville, G., Gilburn, A. & Goulson, D. Larval exposure to neonicotinoid imidacloprid impacts adult size in the farmland butterfly Pieris brassicae. PeerJ 6, e4772 (2018).
Google Scholar
Merckx, T., Kaiser, A. & Van Dyck, H. Increased body size along urbanization gradients at both community and intraspecific level in macro-moths. Glob. Change Biol. 24, 3837–3848 (2018).
Google Scholar
Oliveira, M. O., Brito, T. F., Campbell, A. J. & Contrera, F. A. L. Body size and corbiculae area variation of the stingless bee Melipona fasciculata Smith, 1854 (Apidae, Meliponini) under different levels of habitat quality in the eastern Amazon. Entomol. Gen. 39, 45–52 (2019).
Warzecha, D., Diekötter, T., Wolters, V. & Jauker, F. Intraspecific body size increases with habitat fragmentation in wild bee pollinators. Landsc. Ecol. 31, 1449–1455 (2016).
Theodorou, P., Baltz, L. M., Paxton, R. J. & Soro, A. Urbanization is associated with shifts in bumblebee body size, with cascading effects on pollination. Evol. Appl. 14, 53–68 (2021).
Google Scholar
Strange, J. P. & Tripodi, A. D. Characterizing bumble bee (Bombus) communities in the United States and assessing a conservation monitoring method. Ecol. Evol. 9, 1061–1069 (2019).
Google Scholar
Source: Ecology - nature.com