in

Calculating dissolved marine oxygen values based on an enhanced Benthic Foraminifera Oxygen Index

[adace-ad id="91168"]
  • 1.

    Laffoley, D. & Baxter, J.M. Ocean Deoxygenation: Everyone’s Problem-Causes, Impacts, Consequences and Solutions. (IUCN, 2019).

  • 2.

    Heinze, C. et al. The quiet crossing of ocean tipping points. Proc. Natl. Acad. Sci. 118(9), e2008478118 (2021).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 3.

    Ekau, W., Auel, H., Pörtner, H. O. & Gilbert, D. Impacts of hypoxia on the structure and processes in pelagic communities (zooplankton, macro-invertebrates and fish). Biogeosciences 7(5), 1669–1699 (2010).

    ADS 
    CAS 

    Google Scholar 

  • 4.

    Gallo, N. D. & Levin, L. A. Fish ecology and evolution in the world’s oxygen minimum zones and implications of ocean deoxygenation. Adv. Mar. Biol. 74, 117–198 (2016).

    CAS 

    Google Scholar 

  • 5.

    Breitburg, D. et al. Declining oxygen in the global ocean and coastal waters. Science 359(6371), eaam7240 (2018).

    Google Scholar 

  • 6.

    Hoegh-Guldberg, O. et al. The human imperative of stabilizing global climate change at 1.5 C. Science 365(6459), eaaw6974 (2019).

    CAS 

    Google Scholar 

  • 7.

    Sampaio, E. et al. Impacts of hypoxic events surpass those of future ocean warming and acidification. Nat. Ecol. Evol. 5, 311–321 (2021).

    Google Scholar 

  • 8.

    Chan, F. et al. Emergence of anoxia in the California current large marine ecosystem. Science 319(5865), 920–920 (2008).

    ADS 
    CAS 

    Google Scholar 

  • 9.

    Levin, L. A. et al. Effects of natural and human-induced hypoxia on coastal benthos. Biogeosciences 6, 2063–2098 (2009).

    ADS 
    CAS 

    Google Scholar 

  • 10.

    Stramma, L., Schmidtko, S., Levin, L. A. & Johnson, G. C. Ocean oxygen minima expansions and their biological impacts. Deep Sea Res Part I Oceanogr. Res. Pap. 57(4), 587–595 (2010).

    ADS 
    CAS 

    Google Scholar 

  • 11.

    Hoegh-Guldberg, O. et al. 2018: Impacts of 1.5 °C Global Warming on Natural and Human Systems. In: Global Warming of 1.5°C. An IPCC Special Report on the Impacts of Global Warming of 1.5°C Above Pre-industrial Levels and Related Global Greenhouse Gas Emission Pathways, in the Context of Strengthening the Global Response to the Threat of Climate Change, Sustainable Development, and Efforts to Eradicate Poverty 175–311 (Intergovernmental Panel on Climate Change, 2019).

  • 12.

    Zhang, X. et al. In situ Raman-based measurements of high dissolved methane concentrations in hydrate-rich ocean sediments. Geophys. Res. Lett. 38, L08605 (2011).

    ADS 

    Google Scholar 

  • 13.

    Wright, J. J., Konwar, K. M. & Hallam, S. J. Microbial ecology of expanding oxygen minimum zones. Nat. Rev. Microbiol. 10, 381–394 (2012).

    CAS 

    Google Scholar 

  • 14.

    Kalvelage, T. et al. Nitrogen cycling driven by organic matter export in the South Pacific oxygen minimum zone. Nat. Geosci. 6, 228–234 (2013).

    ADS 
    CAS 

    Google Scholar 

  • 15.

    Falkowski, P. G. Evolution of the nitrogen cycle and its influence on the biological sequestration of CO2 in the ocean. Nature 387(6630), 272–275 (1997).

    ADS 
    CAS 

    Google Scholar 

  • 16.

    Zehr, J. P. & Kudela, R. M. Nitrogen cycle of the open ocean: From genes to ecosystems. Annu. Rev. Mar. Sci. 3, 197–225 (2011).

    ADS 

    Google Scholar 

  • 17.

    Pack, M. A. et al. Methane oxidation in the Eastern Tropical North Pacific Ocean water column. J. Geophys. Res. Biogeosci. 120, 1078–1092 (2015).

    CAS 

    Google Scholar 

  • 18.

    Lashof, D. A. & Ahuja, D. R. Relative contributions of greenhouse gas emissions to global warming. Nature 344, 529–531 (1990).

    ADS 
    CAS 

    Google Scholar 

  • 19.

    Reeburgh, W. S. Oceanic methane biogeochemistry. Chem. Rev. 107, 486–513 (2007).

    CAS 

    Google Scholar 

  • 20.

    Stramma, L., Johnson, G. C., Sprintall, J. & Mohrholz, V. Expanding oxygen-minimum zones in the tropical oceans. Science 320, 655–658 (2008).

    ADS 
    CAS 

    Google Scholar 

  • 21.

    Keeling, R. E., Körtzinger, A. & Gruber, N. Ocean deoxygenation in a warming world. Ann. Rev. Mar. Sci. 2, 199–229 (2010).

    Google Scholar 

  • 22.

    Helm, K. P., Bindoff, N. L. & Church, J. A. Observed decreases in oxygen content of the global ocean. Geophys. Res. Lett. 38, L23602 (2011).

    ADS 

    Google Scholar 

  • 23.

    Kirschke, S. et al. Three decades of global methane sources and sinks. Nat. Geosci. 6, 813–823 (2013).

    ADS 
    CAS 

    Google Scholar 

  • 24.

    Savrda, C. E. & Bottjer, D. J. Trace·fossil model for reconstruction of paleo-oxgenation in bottom waters. Geology 14, 3–6 (1986).

    ADS 
    CAS 

    Google Scholar 

  • 25.

    Savrda, C. E. & Bottjer, D. J. The exaerobic zone, a new oxygen-deficient marine biofacies. Nature 327, 54–56 (1987).

    ADS 

    Google Scholar 

  • 26.

    Savrda, C. E. & Bottjer, D. J. Trace·fossil model for reconstructing oxygenation histories of ancient marine bottom waters: Application to Upper Cretaceous Niobrara Formation, Colorado. Palaeogeogr. Palaeoclimatol. Palaeoecol. 74, 49–74 (1989).

    Google Scholar 

  • 27.

    Kaiho, K. Morphotype changes of deep-sea benthic foraminifera during the Cenozoic Era and their paleoenvironmental implications. Kaseki (Fossils) 47, 1–23 (1989).

    Google Scholar 

  • 28.

    Kaiho, K. Global changes of Paleogene aerobic/anaerobic Benthic foraminifera and deep-sea circulation. Palaeogeogr. Palaeoclimatol. Palaeoecol. 83, 65–85 (1991).

    Google Scholar 

  • 29.

    Kaiho, K. Benthic foraminiferal dissolved-oxygen index and dissolved-oxygen levels in the modern ocean. Geology 22, 719–722 (1994).

    ADS 
    CAS 

    Google Scholar 

  • 30.

    Schumacher, S., Jorissen, F. J., Dissard, D., Larkin, K. E. & Gooday, A. J. Live (Rose Bengal stained) and dead benthic foraminifera from the oxygen minimum zone of the Pakistan continental margin (Arabian Sea). Mar. Micropaleontol. 62, 45–73 (2007).

    ADS 

    Google Scholar 

  • 31.

    Abu-Zied, R. H. et al. Benthic foraminiferal response to changes in bottom-water oxygenation and organic carbon flux in the eastern Mediterranean during LGM to Recent times. Mar. Micropaleontol. 67, 46–68 (2008).

    ADS 

    Google Scholar 

  • 32.

    Grunert, P. et al. Upwelling conditions in the Early Miocene Central Paratethys Sea. Geol. Carpath. 61(2), 129–145 (2010).

    ADS 
    MathSciNet 
    CAS 

    Google Scholar 

  • 33.

    Kaminski, M. A. Calibration of the benthic foraminiferal oxygen index in the Marmara Sea. Geol. Q. 56(4), 757–764 (2012).

    Google Scholar 

  • 34.

    Ilies, I. A. et al. Early middle Miocene paleoenvironmental evolution in southwest Transylvania (Romania): Interpretation based on foraminifera. Geol. Carpath. 71(5), 444–461 (2020).

    Google Scholar 

  • 35.

    Bernhard, J. M. & Bowser, S. S. Benthic foraminifera of dysoxic sediments: Chloroplast sequestration and functional morphology. Earth Sci. Rev. 46(1–4), 149–165 (1999).

    ADS 
    CAS 

    Google Scholar 

  • 36.

    Ohkushi, K. et al. Quantified intermediate water oxygenation history of the NE Pacific: A new benthic foraminiferal record from Santa Barbara basin. Paleoceanography 28(3), 453–467 (2013).

    ADS 

    Google Scholar 

  • 37.

    Lu, W. et al. I/Ca in epifaunal benthic foraminifera: A semi-quantitative proxy for bottom water oxygen in a multi-proxy compilation for glacial ocean deoxygenation. EPSL 533, 116055 (2020).

    CAS 

    Google Scholar 

  • 38.

    Rathburn, A. E., Willingham, J., Ziebis, W., Burkett, A. M. & Corliss, B. H. A new biological proxy for deep-sea paleo-oxygen: Pores of epifaunal benthic foraminifera. Sci. Rep. 8, 1–8 (2018).

    CAS 

    Google Scholar 

  • 39.

    Singh, A. D., Rai, A. K., Verma, K., Das, S. & Bharti, S. K. Benthic foraminiferal diversity response to the climate induced changes in the eastern Arabian Sea oxygen minimum zone during the last 30 ka BP. Quat. Int. 374, 118–125 (2015).

    Google Scholar 

  • 40.

    Palmer, H. M. et al. Southern California margin benthic foraminiferal assemblages record recent centennial-scale changes in oxygen minimum zone. Biogeosciences 17(11), 2923–2937 (2020).

    ADS 

    Google Scholar 

  • 41.

    Tetard, M., Licari, L., Ovsepyan, E., Tachikawa, K. & Beaufort, L. Toward a global calibration for quantifying past oxygenation in oxygen minimum zones using benthic Foraminifera. Biogeosciences 18(9), 2827–2841 (2021).

    ADS 
    CAS 

    Google Scholar 

  • 42.

    Moffitt, S. E., Hill, T. M., Ohkushi, K., Kennett, J. P. & Behl, R. J. Vertical oxygen minimum zone oscillations since 20 ka in Santa Barbara Basin: A benthic foraminiferal community perspective. Paleoceanography 29, 44–57 (2014).

    ADS 

    Google Scholar 

  • 43.

    Hoogakker, B. A., Elderfield, H., Schmiedl, G., McCave, I. N. & Rickaby, R. E. Glacial–interglacial changes in bottom-water oxygen content on the Portuguese margin. Nat. Geosci. 8, 40–43 (2015).

    ADS 
    CAS 

    Google Scholar 

  • 44.

    Glock, N., Liebetrau, V. & Eisenhauer, A. I/Ca ratios in benthic foraminifera from the Peruvian oxygen minimum zone: analytical methodology and evaluation as a proxy for redox conditions. Biogeosciences 11(23), 7077–7095 (2014).

    ADS 

    Google Scholar 

  • 45.

    Jorissen, F.J., Fontanier, C., & Thomas, E. Paleoceanographical proxies based on deep-sea benthic foraminiferal assemblage characteristics. In: Hillaire-Marcel, C., & De Vernal, A. Proxies in late Cenozoic paleoceanography. Dev. Mar. Geol., 1, 263–325 (2007).

  • 46.

    Diaz, R. J. Overview of hypoxia around the world. J. Environ. Qual. 30(2), 275–281 (2001).

    CAS 

    Google Scholar 

  • 47.

    Tetard, M., Licari, L., Tachikawa, K., Ovsepyan, E. & Beaufort, L. Toward a global calibration for quantifying past oxygenation in oxygen minimum zones using benthic Foraminifera. Biogeosci. Discuss. 18(9), 2827–2841 (2021).

  • 48.

    Diaz, R. J. & Rosenberg, R. Marine benthic hypoxia: A review of its ecological effects and the behavioural responses of benthic macrofauna. Oceanogr. Mar. Biol. 33, 245–303 (1995).

    Google Scholar 

  • 49.

    Diaz, R. J. & Rosenberg, R. Spreading dead zones and consequences for marine ecosystems. Science 321, 926–929 (2008).

    ADS 
    CAS 

    Google Scholar 

  • 50.

    Sen Gupta, B. K., Eugene Turner, R. & Rabalais, N. N. Seasonal oxygen depletion in continental-shelf waters of Louisiana: Historical record of benthic foraminifers. Geology 24(3), 227–230 (1996).

    ADS 

    Google Scholar 

  • 51.

    Schlanger, S. O. & Jenkyns, H. C. Cretaceous oceanic anoxic events: Causes and consequences. Geol. Mijnbouw 55, 179–184 (1976).

    Google Scholar 

  • 52.

    Jenkyns, H. C. Geochemistry of oceanic anoxic events. Geochem. Geophys. Geosyst. 11, Q03004 (2010).

    ADS 

    Google Scholar 

  • 53.

    Clark, P. U. et al. Consequences of twenty-first century policy for multi-millennial climate and sea-level change. Nat. Clim. Change 6, 360–369 (2016).

    ADS 

    Google Scholar 

  • 54.

    Clark, P. U. et al. Sea-level commitment as a gauge for climate policy. Nat. Clim. Change 8, 653–655 (2018).

    ADS 

    Google Scholar 

  • 55.

    Li, C., Held, H., Hokamp, S. & Marotzke, J. Optimal temperature overshoot profile found by limiting global sea level rise as a lower-cost climate target. Sci. Adv. 6(2), eaaw9490 (2020).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 56.

    Berner, R. A. & Raiswell, R. Burial of organic carbon and pyrite sulfur in sediments over Phanerozoic time: A new theory. Geochim. Cosmochim. Acta 47(5), 855–862 (1983).

    ADS 
    CAS 

    Google Scholar 

  • 57.

    Gautier, D. L. Cretaceous shales from the western interior of North America: Sulfur/carbon ratios and sulfur-isotope composition. Geology 14(3), 225–228 (1986).

    ADS 
    CAS 

    Google Scholar 

  • 58.

    Kajiwara, Y. & Kaiho, K. Oceanic anoxia at the Cretaceous/Tertiary boundary supported by the sulfur isotopic record. Palaeogeogr. Palaeoclimatol. Palaeoecol. 99, 151–162 (1992).

    Google Scholar 

  • 59.

    Anderson, R. F., LeHuray, A. P., Fleisher, M. Q. & Murray, J. W. Uranium deposition in ancouv inlet sediments, ancouver island. Geochim. Cosmochim. Acta 53(9), 2205–2213 (1989).

    ADS 
    CAS 

    Google Scholar 

  • 60.

    Kaiho, K., Fujiwara, O. & Motoyama, I. Mid-Cretaceous faunal turnover of intermediate-water benthic foraminifera in the northwestern Pacific Ocean margin. Mar. Micropaleontol. 23, 13–49 (1993).

    ADS 

    Google Scholar 

  • 61.

    Kaiho, K., Morgans, H. E. & Okada, H. Faunal turnover of intermediate-water benthic foraminifera during the Paleogene in New Zealand. Mar. Micropaleontol. 23, 51–86 (1993).

    ADS 

    Google Scholar 

  • 62.

    Alegret, L., Molina, E. & Thomas, E. Benthic foraminiferal turnover across the Cretaceous/Paleogene boundary at Agost (southeastern Spain): Paleoenvironmental inferences. Mar. Micropaleontol. 48(3–4), 251–279 (2003).

    ADS 

    Google Scholar 

  • 63.

    Morigi, C. Benthic environmental changes in the Eastern Mediterranean Sea during sapropel S5 deposition. Palaeogeogr. Palaeoclimatol. Palaeoecol. 273(3–4), 258–271 (2009).

    Google Scholar 

  • 64.

    Cetean, C. G., Bălc, R., Kaminski, M. A. & Filipescu, S. Integrated biostratigraphy and palaeoenvironments of an upper Santonian—upper Campanian succession from the southern part of the Eastern Carpathians, Romania. Cretac. Res. 32(5), 575–590 (2011).

    Google Scholar 

  • 65.

    Drinia, H. & Anastasakis, G. Benthic foraminifer palaeoecology of the Late Quaternary continental outer shelf of a landlocked marine basin in central Aegean Sea, Greece. Quat. Int. 261, 43–52 (2012).

    Google Scholar 

  • 66.

    Baas, J. H., Schönfeld, J. & Zahn, R. Mid-depth oxygen drawdown during Heinrich events: Evidence from benthic foraminiferal community structure, trace-fossil tiering, and benthic δ13C at the Portuguese Margin. Mar. Geol. 152(1–3), 25–55 (1998).

    ADS 
    CAS 

    Google Scholar 

  • 67.

    Kaiho, K. Global climatic forcing of deep-sea benthic foraminiferal test size during the past 120 my. Geology 26(6), 491–494 (1998).

    ADS 

    Google Scholar 

  • 68.

    Wang, N., Huang, B. & Dong, Y. The evolution of deepwater dissolved oxygen in the Northern South China Sea during the past 400 ka. In AGU Fall Meeting Abstracts 2016, PP43A-2297 (2016).

  • 69.

    Ukpong, A. J. & Macaulay, E. O. Evaluation of paleo-oxygen conditions of Priabonian-Rupelian sediments of the Agbada Formation, Niger delta based on Fisher’s Diversity Index and Benthic Foraminifera Oxygen Index. IJRD. 2(12), 65–80 (2017).

    Google Scholar 

  • 70.

    Harzhauser, M. et al. Miocene lithostratigraphy of the northern and central Vienna Basin (Austria). Aust. J. Earth Sci. 113, 169–199 (2020).

    ADS 

    Google Scholar 

  • 71.

    Kranner, M. et al. Miocene ecology of the central and northern Vienna Basin (Austria), based on foraminiferal ecology. Palaeogeogr. Palaeoclimatol. Palaeoecol. 581, 110640 (2021).

    Google Scholar 

  • 72.

    Loeblich, A. R. & Tappan, H. Foraminiferal Genera and Their Classification (Von Nostrand Reinhold Co., 1987).

    Google Scholar 

  • 73.

    Kaminski, M. A. The year 2010 classification of the agglutinated foraminifera. Micropaleontology 60, 89–108 (2014).

    Google Scholar 

  • 74.

    Pawlowski, J., Lejzerowicz, F. & Esling, P. Next-generation environmental diversity surveys of foraminifera: Preparing the future. Biol. Bull. 227(2), 93–106 (2014).

    CAS 

    Google Scholar 

  • 75.

    Boersma, A. Foraminifera. In Introduction to Marine Micropaleontology. 19–77 (Elsevier Science BV, 1998).

  • 76.

    Piller, W. E. & Haunold, T. G. The Northern Bay of Safaga (Red Sea, Egypt): An Actuopalaeontological Approach V. Foraminifera (Waldemar Kramer Verlag, 1998).

    Google Scholar 

  • 77.

    Amao, A. O. et al. Distribution of benthic foraminifera along the Iranian coast. Mar. Biodivers. 49, 399–945 (2019).

    Google Scholar 

  • 78.

    Charrieau, L. M. et al. The effects of multiple stressors on the distribution of coastal benthic foraminifera: A case study from the Skagerrak-Baltic Sea region. Mar. Micropaleontol. 139, 42–56 (2018).

    ADS 

    Google Scholar 

  • 79.

    Charrieau, L. M. et al. Rapid environmental responses to climate-induced hydrographic changes in the Baltic Sea entrance. Biogeosciences 16, 3835–3852 (2019).

    ADS 
    CAS 

    Google Scholar 

  • 80.

    Groeneveld, J. et al. Assessing proxy signatures of temperature, salinity, and hypoxia in the Baltic Sea through foraminifera-based geochemistry and faunal assemblages. J. Micropalaeontol. 37, 403–429 (2018).

    ADS 

    Google Scholar 

  • 81.

    García-Gallardo, Á. et al. Benthic foraminifera-based reconstruction of the first Mediterranean-Atlantic exchange in the early Pliocene Gulf of Cadiz. Palaeogeogr. Palaeoclimatol. Palaeoecol. 472, 93–107 (2017).

    Google Scholar 

  • 82.

    Rupp, C. & Ćorić, S. Zur Eferding-Formation. Jahrb. Geol. Bundesanst. 155, 33–95 (2015).

    Google Scholar 

  • 83.

    Murray, J. W. Ecology and Applications of Benthic Foraminifera (Cambridge University Press, 2006).

    Google Scholar 

  • 84.

    Jorissen, F. J., de Stigter, H. C. & Widmark, J. G. A conceptual model explaining benthic foraminiferal microhabitats. Mar. Micropaleontol. 26, 3–15 (1995).

    ADS 

    Google Scholar 

  • 85.

    Garcia, H.E. et al. World Ocean Atlas 2013. Vol. 3: Dissolved Oxygen, Apparent Oxygen Utilization, and Oxygen Saturation. (NOAA Atlas NESDIS 75, 2013).

  • 86.

    Murray, J. W. Ecology and Palaeoecology of Benthic Foraminifera. (Longman Scientific and Technical, 1991).

  • 87.

    Reymond, C. E., Lloyd, A., Kline, D. I., Dove, S. G. & Pandolfi, J. M. Decline in growth of foraminifer Marginopora rossi under eutrophication and ocean acidification scenarios. Glob. Change Biol. 19, 291–302 (2013).

    ADS 

    Google Scholar 

  • 88.

    Titelboim, D. et al. Selective responses of benthic foraminifera to thermal pollution. Mar. Pollut. Bull. 105, 324–333 (2016).

    CAS 

    Google Scholar 

  • 89.

    Renema, W. Terrestrial influence as a key driver of spatial variability in large benthic foraminiferal assemblage composition in the Central Indo-Pacific. Earth-Sci. Rev. 177, 514–544 (2018).

    ADS 

    Google Scholar 

  • 90.

    Koho, K. A. et al. Sedimentary labile organic carbon and pore water redox control on species distribution of benthic foraminifera: A case study from Lisbon-Setúbal Canyon (southern Portugal). Prog. Oceanogr. 79, 55–82 (2008).

    ADS 

    Google Scholar 


  • Source: Ecology - nature.com

    Wildland fire smoke alters the composition, diversity, and potential atmospheric function of microbial life in the aerobiome

    No short-term effect of sinking microplastics on heterotrophy or sediment clearing in the tropical coral Stylophora pistillata