in

Carcass appearance does not influence scavenger avoidance of carnivore carrion

  • DeVault, T. L., Rhodes, O. E. Jr. & Shivik, J. A. Scavenging by vertebrates: Behavioral, ecological, and evolutionary perspectives on an important energy transfer pathway in terrestrial ecosystems. Oikos 102, 225–234 (2003).

    Google Scholar 

  • Wilson, E. E. & Wolkovich, E. M. Scavenging: How carnivores and carrion structure communities. Trends Ecol. Evol. 26, 129–135 (2011).

    PubMed 

    Google Scholar 

  • Barton, P. S., Cunningham, S. A., Lindenmayer, D. B. & Manning, A. D. The role of carrion in maintaining biodiversity and ecological processes in terrestrial ecosystems. Oecologia 171, 761–772 (2013).

    ADS 
    PubMed 

    Google Scholar 

  • Benbow, M. E. et al. Necrobiome framework for bridging decomposition ecology of autotrophically and heterotrophically derived organic matter. Ecol. Monogr. 89, e01331 (2019).

    Google Scholar 

  • Carter, D. O., Yellowlees, D. & Tibbett, M. Cadaver decomposition in terrestrial ecosystems. Naturwissenschaften 94, 12–24 (2007).

    ADS 
    PubMed 
    CAS 

    Google Scholar 

  • Bump, J. K., Peterson, R. O. & Vucetich, J. A. Wolves modulate soil nutrient heterogeneity and foliar nitrogen by configuring the distribution of ungulate carcasses. Ecology 90, 3159–3167 (2009).

    PubMed 

    Google Scholar 

  • Beasley, J. C., Olson, Z. H. & DeVault, T. L. Ecological role of vertebrate scavengers. In Carrion Ecology, Evolution, and Their Applications (eds Benbow, E. M. et al.) 107–127 (CRC Press, 2015).

    Google Scholar 

  • DeVault, T. L., Brisbin, I. L. Jr. & Rhodes, O. E. Jr. Factors influencing the acquisition of rodent carrion by vertebrate scavengers and decomposers. Can. J. Zool. 82, 502–509 (2004).

    Google Scholar 

  • Moleón, M., Sánchez-Zapata, J. A., Sebastián-González, E. & Owen-Smith, N. Carcass size shapes the structure and functioning of an African scavenging assemblage. Oikos 124, 1391–1403 (2015).

    Google Scholar 

  • Turner, K. L., Abernethy, E. F., Conner, L. M., Rhodes, O. E. & Beasley, J. C. Abiotic and biotic factors modulate carrion fate and vertebrate scavenging communities. Ecology 98, 2413–2424 (2017).

    PubMed 

    Google Scholar 

  • Selva, N. The Role of Scavenging in the Predator Community of Białowieża Primeval Forest (E Poland) (Univeristy of Sevilla, 2004).

    Google Scholar 

  • Moleón, M. et al. Carnivore carcasses are avoided by carnivores. J. Anim. Ecol. 86, 1179–1191 (2017).

    PubMed 

    Google Scholar 

  • Selva, N. & Fortuna, M. A. The nested structure of a scavenger community. Proc. R. Soc. B Biol. Sci. 274, 1101–1108 (2007).

    Google Scholar 

  • Abernethy, E. F. et al. Carcasses of invasive species are predominantly utilized by invasive scavengers in an island ecosystem. Ecosphere 7, e01496 (2016).

    Google Scholar 

  • DeVault, T. L., Seamans, T. W., Linnell, K. E., Sparks, D. W. & Beasley, J. C. Scavenger removal of bird carcasses at simulated wind turbines: Does carcass type matter?. Ecosphere 8, e01994 (2017).

    Google Scholar 

  • Olson, Z. H., Beasley, J. C. & Rhodes, O. E. Carcass type affects local scavenger guilds more than habitat connectivity. PLoS ONE 11, e0147798 (2016).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Muñoz-Lozano, C. et al. Avoidance of carnivore carcasses by vertebrate scavengers enables colonization by a diverse community of carrion insects. PLoS ONE 14, e0221890 (2019).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Peers, M. J. L. et al. Vertebrate scavenging dynamics differ between carnivore and herbivore carcasses in the northern boreal forest. Ecosphere 12, e03691 (2021).

    Google Scholar 

  • Pfennig, D. W. Effect of predator-prey phylogenetic similarity on the fitness consequences of predation: A trade-off between nutrition and disease?. Am. Nat. 155, 335–345 (2000).

    PubMed 

    Google Scholar 

  • Polis, G. A. The evolution and dynamics of intraspecific predation. Annu. Rev. Ecol. Syst. 12, 225–251 (1981).

    Google Scholar 

  • Elgar, M. A. & Crespi, B. J. Cannibalism: Ecology and Evolution Among Diverse Taxa (Oxford University Press, 1992).

    Google Scholar 

  • Fouilloux, C., Ringler, E. & Rojas, B. Cannibalism. Curr. Biol. 29, R1295–R1297 (2019).

    PubMed 
    CAS 

    Google Scholar 

  • Oliva-Vidal, P., Tobajas, J. & Margalida, A. Cannibalistic necrophagy in red foxes: Do the nutritional benefits offset the potential costs of disease transmission?. Mamm. Biol. https://doi.org/10.1007/s42991-021-00184-5 (2021).

    Article 

    Google Scholar 

  • Mateo, J. M. Recognition systems and biological organization: The perception component of social recognition. Ann. Zool. Fenn. 41, 729745 (2004).

    Google Scholar 

  • Dangles, O., Irschick, D., Chittka, L. & Casas, J. Variability in sensory ecology: Expanding the bridge between physiology and evolutionary biology. Q. Rev. Biol. 84, 51–74 (2009).

    PubMed 

    Google Scholar 

  • Janzen, D. H. Why fruits rot, seeds mold, and meat spoils. Am. Nat. 111, 691–713 (1977).

    CAS 

    Google Scholar 

  • Ogada, D. L., Torchin, M. E., Kinnaird, M. F. & Ezenwa, V. O. Effects of vulture declines on facultative scavengers and potential implications for mammalian disease transmission. Conserv. Biol. 26, 453–460 (2012).

    PubMed 
    CAS 

    Google Scholar 

  • Gonzálvez, M., Martínez-Carrasco, C., Sánchez-Zapata, J. A. & Moleón, M. Smart carnivores think twice: red fox delays scavenging on conspecific carcasses to reduce parasite risk. Appl. Anim. Behav. Sci. 243, 105462 (2021).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Selva, N., Jedrzejewska, B., Jedrzejewski, W. & Wajrak, A. Scavenging on European bison carcasses in Bialowieza Primeval Forest (eastern Poland). Écoscience 10, 303–311 (2003).

    Google Scholar 

  • Carr, W. J., Hirsch, J. T., Campellone, B. E. & Marasco, E. Some determinants of a natural food aversion in Norway rats. J. Comp. Physiol. Psychol. 93, 899–906 (1979).

    Google Scholar 

  • Gaynor, K. M., Brown, J. S., Middleton, A. D., Power, M. E. & Brashares, J. S. Landscapes of fear: Spatial patterns of risk perception and response. Trends Ecol. Evol. 34, 355–368 (2019).

    PubMed 

    Google Scholar 

  • Moleón, M. & Sánchez-Zapata, J. A. The role of carrion in the landscapes of fear and disgust: a review and prospects. Diversity 13, 28 (2021).

    Google Scholar 

  • Hartig, F. DHARMa: Residual Diagnostics for Hierarchical (Multi-Level/Mixed) Regression Models (Springer, 2022).

    Google Scholar 

  • Hothorn, T., Winell, H., Hornik, K., van de Wiel, M. A. & Zeileis, A. Coin: Conditional Inference Procedures in a Permutation Test Framework (Springer, 2021).

    Google Scholar 

  • Owings, C. G., Gilhooly, W. P. & Picard, C. J. Blow fly stable isotopes reveal larval diet: A case study in community level anthropogenic effects. PLoS ONE 16, e0249422 (2021).

    PubMed 
    PubMed Central 
    CAS 

    Google Scholar 

  • Matuszewski, S., Konwerski, S., Frątczak, K. & Szafałowicz, M. Effect of body mass and clothing on decomposition of pig carcasses. Int. J. Legal Med. 128, 1039–1048 (2014).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Cunningham, C. X. et al. Top carnivore decline has cascading effects on scavengers and carrion persistence. Proc. R. Soc. B. 285, 1–10 (2018).

    Google Scholar 

  • Huang, S., Bininda-Emonds, O. R. P., Stephens, P. R., Gittleman, J. L. & Altizer, S. Phylogenetically related and ecologically similar carnivores harbour similar parasite assemblages. J. Anim. Ecol. 83, 671–680 (2014).

    PubMed 

    Google Scholar 

  • Hill, D. E., Chirukandoth, S. & Dubey, J. P. Biology and epidemiology of Toxoplasma gondii in man and animals. Anim. Health Res. Rev. 6, 41–61 (2005).

    PubMed 

    Google Scholar 

  • Hill, D. E. et al. Trichinella murrelli in scavenging mammals from south-central Wisconsin, USA. J. Wildl. Dis. 44, 629–635 (2008).

    PubMed 
    CAS 

    Google Scholar 

  • Sandfoss, M., DePerno, C., Patton, S., Flowers, J. & Kennedy-Stoskopf, S. Prevalence of antibody to Toxoplasma gondii and Trichinella spp. in feral pigs (Sus scrofa) of eastern North Carolina. J. Wildl. Dis. 47, 338–343 (2011).

    PubMed 

    Google Scholar 

  • Butler, J. R. A., du Toit, J. T. & Bingham, J. Free-ranging domestic dogs (Canis familiaris) as predators and prey in rural Zimbabwe: Threats of competition and disease to large wild carnivores. Biol. Conserv. 115, 369–378 (2004).

    Google Scholar 

  • Mendenhall, I. H. et al. Evidence of canine parvovirus transmission to a civet cat (Paradoxurus musangus) in Singapore. One Health 2, 122–125 (2016).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Han, B. A., Castellanos, A. A., Schmidt, J. P., Fischhoff, I. R. & Drake, J. M. The ecology of zoonotic parasites in the Carnivora. Trends Parasitol. 37, 1096–1110 (2021).

    PubMed 

    Google Scholar 

  • Malmberg, J. L., White, L. A. & VandeWoude, S. Bioaccumulation of pathogen exposure in top predators. Trends Ecol. Evol. 36, 411–420 (2021).

    PubMed 

    Google Scholar 

  • Mammal Diversity Database (Version 1.9). https://doi.org/10.5281/zenodo.6407053 (2022).

  • Han, B. A., Kramer, A. M. & Drake, J. M. Global patterns of zoonotic disease in mammals. Trends Parasitol. 32, 565–577 (2016).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Digby, Z. et al. Evolutionary loss of inflammasomes in the Carnivora and implications for the carriage of zoonotic infections. Cell Rep. 36, 109614 (2021).

    PubMed 
    PubMed Central 
    CAS 

    Google Scholar 

  • Buck, J. C., Weinstein, S. B. & Young, H. S. Ecological and evolutionary consequences of parasite avoidance. Trends Ecol. Evol. 33, 619–632 (2018).

    PubMed 
    CAS 

    Google Scholar 

  • Hart, B. L. & Hart, L. A. How mammals stay healthy in nature: The evolution of behaviours to avoid parasites and pathogens. Philos. Trans. R. Soc. B 373, 20170205 (2018).

    Google Scholar 

  • Brown, C. J. & Plug, I. Food choice and diet of the bearded vulture Gypaetus barbatus in southern Africa. S. Afr. J. Zool. 25, 169–177 (1990).

    Google Scholar 

  • Rossi, L., Interisano, M., Deksne, G. & Pozio, E. The subnivium, a haven for Trichinella larvae in host carcasses. Int. J. Parasitol. Parasit. Wildl. 8, 229–233 (2019).

    Google Scholar 

  • Micozzi, M. S. Experimental study of postmortem change under field conditions: Effects of freezing, thawing, and mechanical injury. J. Forensic Sci. 31, 953–961 (1986).

    PubMed 
    CAS 

    Google Scholar 

  • Mayntz, D. & Toft, S. Nutritional value of cannibalism and the role of starvation and nutrient imbalance for cannibalistic tendencies in a generalist predator. J. Anim. Ecol. 75, 288–297 (2006).

    PubMed 

    Google Scholar 

  • Margalida, A. Bearded vultures (Gypaetus barbatus) prefer fatty bones. Behav. Ecol. Sociobiol. 63, 187–193 (2008).

    Google Scholar 

  • Parmenter, R. R. & MacMahon, J. A. Carrion decomposition and nutrient cycling in a semiarid shrub–steppe ecosystem. Ecol. Monogr. 79, 637–661 (2009).

    Google Scholar 

  • Evans, B. E., Mosby, C. E. & Mortelliti, A. Assessing arrays of multiple trail cameras to detect North American mammals. PLoS ONE 14, 1–18 (2019).

    Google Scholar 

  • Ivan, J. S. & Newkirk, E. S. CPW Photo Warehouse: A custom database to facilitate archiving, identifying, summarizing and managing photo data collected from camera traps. Methods Ecol. Evol. 7, 499–504 (2016).

    Google Scholar 

  • Therneau, T. M. & Grambsch, P. M. Modeling Survival Data: Extending the Cox Model (Springer, 2000).

    MATH 

    Google Scholar 

  • Kassambara, A., Kosinski, M. & Biecek, P. survminer: Drawing Survival Curves Using ‘ggplot2’ (Springer, 2020).

    Google Scholar 

  • Nenadic, O. & Greenacre, M. Correspondence analysis in R, with two- and three-dimensional graphics: the ca package. J. Stat. Softw. 20, 1–13 (2007).

    Google Scholar 

  • Kassambara, A. & Mundt, F. factoextra: Extract and Visualize the Results of Multivariate Data Analyses (Springer, 2020).

    Google Scholar 

  • Greenacre, M. The contributions of rare objects in correspondence analysis. Ecology 94, 241–249 (2013).

    PubMed 

    Google Scholar 

  • R Core Team. R: A Language and Environment for Statistical Computing (R Foundation for Statistical Computing, 2022).

    Google Scholar 


  • Source: Ecology - nature.com

    A short exposure to a semi-natural habitat alleviates the honey bee hive microbial imbalance caused by agricultural stress

    Phosphate limitation intensifies negative effects of ocean acidification on globally important nitrogen fixing cyanobacterium