in

Cascading effects of habitat loss on ectoparasite-associated bacterial microbiomes

  • Alroy J. Effects of habitat disturbance on tropical forest biodiversity. Proc Natl Acad Sci USA. 2017;114:6056–61.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Gatti LV, Basso LS, Miller JB, Gloor M, Gatti Domingues L, Cassol HLG, et al. Amazonia as a carbon source linked to deforestation and climate change. Nature. 2021;595:388–93.

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Ellwanger JH, Kulmann-Leal B, Kaminski VL, Valverde-Villegas JM, Veiga ABGDA, Spilki FR, et al. Beyond diversity loss and climate change: impacts of Amazon deforestation on infectious diseases and public health. An Acad Bras Cienc. 2020;92:e20191375.

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Morand S, Lajaunie C. Outbreaks of vector-borne and zoonotic diseases are associated with changes in forest cover and oil palm expansion at global scale. Front Vet Sci. 2021;8:661063.

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Keenan RJ, Reams GA, Achard F, de Freitas JV, Grainger A, Lindquist E. Dynamics of global forest area: results from the FAO Global Forest Resources Assessment 2015. For Ecol Manage. 2015;352:9–20.

    Article 

    Google Scholar 

  • Rezende CL, Scarano FR, Assad ED, Joly CA, Metzger JP, Strassburg BBN, et al. From hotspot to hopespot: an opportunity for the Brazilian Atlantic Forest. Perspectives in Ecology and Conservation. 2018;16:208–14.

    Article 

    Google Scholar 

  • Yarwood SA. The role of wetland microorganisms in plant-litter decomposition and soil organic matter formation: a critical review. FEMS Microbiol Ecol. 2018;94: https://doi.org/10.1093/femsec/fiy175.

  • Kock RA, Orynbayev M, Robinson S, Zuther S, Singh NJ, Beauvais W, et al. Saigas on the brink: multidisciplinary analysis of the factors influencing mass mortality events. Sci Adv. 2018;4:eaao2314.

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • Murdock CC, Blanford S, Hughes GL, Rasgon JL, Thomas MB. Temperature alters Plasmodium blocking by Wolbachia. Sci Rep. 2014;4:3932.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • MacArthur RH, Wilson EO. An equilibrium theory of insular zoogeography. Evolution. 1963;17:373–87.

    Article 

    Google Scholar 

  • Krasnov BR, Shenbrot GI, Medvedev SG. Host–habitat relations as an important determinant of spatial distribution of flea assemblages (Siphonaptera) on rodents in the Negev Desert. Parasitology. 1997;114:159–73.

  • Poulin R. Are there general laws in parasite ecology? Parasitology 2007;134:63–776

  • Speer KA, Dheilly NM, Perkins SL. Microbiomes are integral to conservation of parasitic arthropods. Biol Conserv. 2020;250:108695.

  • Bell T, Ager D, Song J-I, Newman JA, Thompson IP, Lilley AK, et al. Larger islands house more bacterial taxa. Science. 2005;308:1884.

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Zinger L, Boetius A, Ramette A. Bacterial taxa-area and distance-decay relationships in marine environments. Mol Ecol. 2014;23:954–64.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Martiny JBH, Bohannan BJM, Brown JH, Colwell RK, Fuhrman JA, Green JL, et al. Microbial biogeography: putting microorganisms on the map. Nat Rev Microbiol. 2006;4:102–12.

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Carbonero F, Oakley BB, Purdy KJ. Metabolic flexibility as a major predictor of spatial distribution in microbial communities. PLoS One. 2014;9:e85105.

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • van der Gast CJ. Microbial biogeography: the end of the ubiquitous dispersal hypothesis? Environ Microbiol. 2015;17:544–6.

    PubMed 
    Article 

    Google Scholar 

  • Weiss B, Aksoy S. Microbiome influences on insect host vector competence. Trends Parasitol. 2011;27:514–22.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Gupta A, Nair S. Dynamics of insect-microbiome interaction influence host and microbial symbiont. Front Microbiol. 2020;11:1357.

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Dick CW, Dittmar K. Parasitic bat Flies (Diptera: Streblidae and Nycteribiidae): Host specificity and potential as vectors. In: Klimpel S, Mehlhorn H (eds). Bats (Chiroptera) as Vectors of Diseases and Parasites. 2014. Springer, Berlin, Heidelberg, pp 131–55.

  • Speer KA, Luetke E, Bush E, Sheth B, Gerace A, Quicksall Z, et al. A fly on the cave wall: Parasite genetics reveal fine-scale dispersal patterns of bats. 2019;105:555-66.

  • Patterson BD, Dick CW, Dittmar K. Sex biases in parasitism of neotropical bats by bat flies (Diptera: Streblidae). J Trop Ecol. 2008;24:387–96.

    Article 

    Google Scholar 

  • Hiller T, Brändel SD, Honner B, Page RA, Tschapka M. Parasitization of bats by bat flies (Streblidae) in fragmented habitats. Biotropica. 2020;72:617.

    Google Scholar 

  • Kikuchi Y, Tada A, Musolin DL, Hari N, Hosokawa T, Fujisaki K, et al. Collapse of insect gut symbiosis under simulated climate change. MBio. 2016;7:e01578-16.

  • Thapa S, Zhang Y, Allen MS. Effects of temperature on bacterial microbiome composition in Ixodes scapularis ticks. Microbiologyopen. 2019;8:e00719.

    PubMed 
    Article 
    CAS 

    Google Scholar 

  • Teixeira TSM. Bats in a fragmented world. 2019. Queen Mary University of London.

  • Emmons L, Feer F. Neotropical rainforest mammals: a field guide. 1997. sidalc.net.

  • Reis NR, Fregonezi MN, Peracchi AL, Shibatta OA. Morcegos do Brasil: guia de campo. 2013. Technical Books Editora.

  • Sikes RS, Care A, of Mammalogists UC of TAS. 2016 Guidelines of the American Society of Mammalogists for the use of wild mammals in research and education. J Mammal. 2016;97:663–88.

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Wenzel RL. The streblid batflies of Venezuela (Diptera: Streblidae). Brigham Young University Science Bulletin. Biological Series. 1976;20:1.

    Google Scholar 

  • Graciolli G, de Carvalho CJB. Moscas ectoparasitas (Diptera, Hippoboscoidea) de morcegos (Mammalia, Chiroptera) do Estado do Paraná. 11. Streblidae. Chave pictórica para gêneros e espécies 1. RevIa bras Zool. 2001;18:907–60.

    Article 

    Google Scholar 

  • Graciolli G, de Carvalho CJB. Moscas ectoparasitas (Diptera, Hippoboscoidea, Nycteribiidae) de morcegos (Mammalia, Chiroptera) do Estado do Paraná, Brasil. I. Basilia, taxonomia e chave pictórica para as espécies 1. RevIa bras Zool. 2001;18:33–49.

    Article 

    Google Scholar 

  • Folmer O, Black M, Hoeh W, Lutz R, Vrijenhoek R. DNA primers for amplification of mitochondrial cytochrome c oxidase subunit I from diverse metazoan invertebrates. Mol Mar Biol Biotechnol. 1994;3:294–9.

    CAS 
    PubMed 

    Google Scholar 

  • Hebert PDN, Cywinska A, Ball SL, deWaard JR. Biological identifications through DNA barcodes. Proceedings of the Royal Society of London Series B: Biological Sciences. 2003;270:313–21.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Gustafson EJ, Parker GR. Relationships between landcover proportion and indices of landscape spatial pattern. Landsc Ecol. 1992;7:101–10.

    Article 

    Google Scholar 

  • McGarigal K, Cushman SA, Neel MC, Ene E. FRAGSTATS: spatial pattern analysis program for categorical maps. 2002. University of Massachusetts.

  • Gilbert JA, Meyer F, Antonopoulos D, Balaji P, Brown CT, Brown CT, et al. Meeting report: the terabase metagenomics workshop and the vision of an Earth microbiome project. Stand Genomic Sci. 2010;3:243–8.

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Gilbert JA, Jansson JK, Knight R. The Earth Microbiome project: successes and aspirations. BMC Biol. 2014;12:69.

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • Apprill A, McNally S, Parsons R, Weber L. Minor revision to V4 region SSU rRNA 806R gene primer greatly increases detection of SAR11 bacterioplankton. Aquat Microb Ecol. 2015;75:129–37.

    Article 

    Google Scholar 

  • Parada AE, Needham DM, Fuhrman JA. Every base matters: assessing small subunit rRNA primers for marine microbiomes with mock communities, time series and global field samples. Environ Microbiol. 2016;18:1403–14.

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Martin M. Cutadapt removes adapter sequences from high-throughput sequencing reads. EMBnet.journal. 2011;17:10–12.

    Article 

    Google Scholar 

  • Katoh K, Misawa K, Kuma K-I, Miyata T. MAFFT: a novel method for rapid multiple sequence alignment based on fast Fourier transform. Nucleic Acids Res. 2002;30:3059–66.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Katoh K, Kuma K-I, Toh H, Miyata T. MAFFT version 5: improvement in accuracy of multiple sequence alignment. Nucleic Acids Res. 2005;33:511–8.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Katoh K, Toh H. PartTree: an algorithm to build an approximate tree from a large number of unaligned sequences. Bioinformatics. 2007;23:372–4.

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Price MN, Dehal PS, Arkin AP. FastTree 2-approximately maximum-likelihood trees for large alignments. PLoS One. 2010;5:e9490.

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • Callahan BJ, McMurdie PJ, Rosen MJ, Han AW, Johnson AJA, Holmes SP. DADA2: high-resolution sample inference from Illumina amplicon data. Nat Methods. 2016;13:581–3.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • DeSantis TZ, Hugenholtz P, Larsen N, Rojas M, Brodie EL, Keller K, et al. Greengenes, a chimera-checked 16S rRNA gene database and workbench compatible with ARB. Appl Environ Microbiol. 2006;72:5069–72.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Hosokawa T, Nikoh N, Koga R, Satô M, Tanahashi M, Meng X-Y, et al. Reductive genome evolution, host–symbiont co-speciation and uterine transmission of endosymbiotic bacteria in bat flies. ISME J. 2012;6:577–87.

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Duron O, Schneppat UE, Berthomieu A, Goodman SM, Droz B, Paupy C, et al. Origin, acquisition and diversification of heritable bacterial endosymbionts in louse flies and bat flies. Mol Ecol. 2014;23:2105–17.

    PubMed 
    Article 

    Google Scholar 

  • Quast C, Pruesse E, Yilmaz P, Gerken J, Schweer T, Yarza P, et al. The SILVA ribosomal RNA gene database project: improved data processing and web-based tools. Nucleic Acids Res. 2013;41:D590–6.

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Yilmaz P, Parfrey LW, Yarza P, Gerken J, Pruesse E, Quast C, et al. The SILVA and “All-species Living Tree Project (LTP)” taxonomic frameworks. Nucleic Acids Res. 2014;42:D643–8.

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Glöckner FO, Yilmaz P, Quast C, Gerken J, Beccati A, Ciuprina A, et al. 25 years of serving the community with ribosomal RNA gene reference databases and tools. J Biotechnol. 2017;261:169–76.

    PubMed 
    Article 
    CAS 

    Google Scholar 

  • Nováková E, Hypsa V, Moran NA. Arsenophonus, an emerging clade of intracellular symbionts with a broad host distribution. BMC Microbiol. 2009;9:143.

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Bressan A, Terlizzi F, Credi R. Independent origins of vectored plant pathogenic bacteria from arthropod-associated Arsenophonus endosymbionts. Microb Ecol. 2012;63:628–38.

    PubMed 
    Article 

    Google Scholar 

  • Salter SJ, Cox MJ, Turek EM, Calus ST, Cookson WO, Moffatt MF, et al. Reagent and laboratory contamination can critically impact sequence-based microbiome analyses. BMC Biol. 2014;12:87.

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • Weiss S, Amir A, Hyde ER, Metcalf JL, Song SJ, Knight R. Tracking down the sources of experimental contamination in microbiome studies. Genome Biol. 2014;15:564.

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Eisenhofer R, Minich JJ, Marotz C, Cooper A, Knight R, Weyrich LS. Contamination in low microbial biomass microbiome studies: Issues and recommendations. Trends Microbiol. 2019;27:105–17.

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Davis NM, Proctor DM, Holmes SP, Relman DA, Callahan BJ. Simple statistical identification and removal of contaminant sequences in marker-gene and metagenomics data. Microbiome. 2018;6:226.

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Bokulich NA, Subramanian S, Faith JJ, Gevers D, Gordon JI, Knight R, et al. Quality-filtering vastly improves diversity estimates from Illumina amplicon sequencing. Nat Methods. 2013;10:57–59.

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Alberdi A, Aizpurua O, Gilbert MTP, Bohmann K. Scrutinizing key steps for reliable metabarcoding of environmental samples. Methods Ecol Evol. 2018;9:134–47.

    Article 

    Google Scholar 

  • McMurdie PJ, Holmes S. Phyloseq: a bioconductor package for handling and analysis of high-throughput phylogenetic sequence data. Pac Symp Biocomput 2012; 235–46.

  • McMurdie PJ, Holmes S. phyloseq: an R package for reproducible interactive analysis and graphics of microbiome census data. PLoS One. 2013;8:e61217.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Oksanen J, Blanchet FG, Friendly M, Kindt R, Legendre P, McGlinn D, et al. vegan: community ecology package. R package version 2.4–4. 2017. 2018.

  • Wickham H. ggplot2: Elegant Graphics for Data Analysis. 2016. Springer.

  • Fernandes AD, Reid JN, Macklaim JM, McMurrough TA, Edgell DR, Gloor GB. Unifying the analysis of high-throughput sequencing datasets: characterizing RNA-seq, 16S rRNA gene sequencing and selective growth experiments by compositional data analysis. Microbiome. 2014;2:15.

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Gloor GB, Reid G. Compositional analysis: a valid approach to analyze microbiome high-throughput sequencing data. Can J Microbiol. 2016;62:692–703.

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Tsilimigras MCB, Fodor AA. Compositional data analysis of the microbiome: fundamentals, tools, and challenges. Ann Epidemiol. 2016;26:330–5.

    PubMed 
    Article 

    Google Scholar 

  • Gloor GB, Macklaim JM, Pawlowsky-Glahn V, Egozcue JJ. Microbiome datasets are compositional: And this is not optional. Front Microbiol. 2017;8:2224.

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Silverman JD, Washburne AD, Mukherjee S, David LA. A phylogenetic transform enhances analysis of compositional microbiota data. Elife 2017;6.

  • Xia Y, Sun J. Hypothesis testing and statistical analysis of microbiome. Genes Dis. 2017;4:138–48.

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Anderson MJ, Walsh DCI. PERMANOVA, ANOSIM, and the Mantel test in the face of heterogeneous dispersions: What null hypothesis are you testing? Ecol Monogr. 2013;83:557–74.

    Article 

    Google Scholar 

  • Anderson MJ. Permutational Multivariate Analysis of Variance (PERMANOVA). In: Balakrishnan N, Colton T, Everitt B, Piegorsch W, Ruggeri F, Teugels JL (eds). Wiley StatsRef: Statistics Reference Online. 2014. John Wiley & Sons, Ltd, Chichester, UK, pp 1–15.

  • Kurtz ZD, Müller CL, Miraldi ER, Littman DR, Blaser MJ, Bonneau RA. Sparse and compositionally robust inference of microbial ecological networks. PLoS Comput Biol. 2015;11:e1004226.

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • Liu H, Roeder K, Wasserman L. Stability Approach to Regularization Selection (StARS) for High Dimensional Graphical Models. Adv Neural Inf Process Syst. 2010;24:1432–40.

    PubMed 
    PubMed Central 

    Google Scholar 

  • Röttjers L, Faust K. From hairballs to hypotheses-biological insights from microbial networks. FEMS Microbiol Rev. 2018;42:761–80.

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • Freeman LC. Centrality in social networks conceptual clarification. Soc Networks. 1978;1:215–39.

    Article 

    Google Scholar 

  • Brandes U. A faster algorithm for betweenness centrality. J Math Sociol. 2001;25:163–77.

    Article 

    Google Scholar 

  • Csardi G, Nepusz T. The igraph software package for complex network research. InterJournal. Complex Systems. 2006;1695:1–9.

    Google Scholar 

  • Newman MEJ. Finding community structure in networks using the eigenvectors of matrices. Phys Rev E Stat Nonlin Soft Matter Phys. 2006;74:036104.

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Delmas E, Besson M, Brice M-H, Burkle LA, Dalla Riva GV, Fortin M-J, et al. Analysing ecological networks of species interactions: Analyzing ecological networks. Biol Rev. 2019;94:16–36.

    Article 

    Google Scholar 

  • Fortunato S, Hric D. Community detection in networks: A user guide. arXiv [physics.soc-ph]. 2016.

  • Singh A, Humphries MD. Finding communities in sparse networks. Sci Rep. 2015;5:8828.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Yaveroğlu ÖN, Malod-Dognin N, Davis D, Levnajic Z, Janjic V, Karapandza R, et al. Revealing the hidden language of complex networks. Sci Rep. 2014;4:4547.

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • Przulj N. Biological network comparison using graphlet degree distribution. Bioinformatics. 2007;23:e177–83.

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Hočevar T, Demšar J. Computation of graphlet orbits for nodes and edges in sparse graphs. J Stat Softw 2016;71.

  • Müller CL, Bonneau R, Kurtz Z. Generalized stability approach for regularized graphical models. arXiv [statME]. 2016.

  • Mahana D, Trent CM, Kurtz ZD, Bokulich NA, Battaglia T, Chung J, et al. Antibiotic perturbation of the murine gut microbiome enhances the adiposity, insulin resistance, and liver disease associated with high-fat diet. Genome Med. 2016;8:48.

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • Ruiz VE, Battaglia T, Kurtz ZD, Bijnens L, Ou A, Engstrand I, et al. A single early-in-life macrolide course has lasting effects on murine microbial network topology and immunity. Nat Commun. 2017;8:518.

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • Amato KR, Yeoman CJ, Kent A, Righini N, Carbonero F, Estrada A, et al. Habitat degradation impacts black howler monkey (Alouatta pigra) gastrointestinal microbiomes. ISME J. 2013;7:1344–53.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Avena CV, Parfrey LW, Leff JW, Archer HM, Frick WF, Langwig KE, et al. Deconstructing the bat skin microbiome: Influences of the host and the environment. Front Microbiol. 2016;7:1753.

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Becker CG, Longo AV, Haddad CFB, Zamudio KR. Land cover and forest connectivity alter the interactions among host, pathogen and skin microbiome. Proc Biol Sci 2017;284.

  • Ingala MR, Becker DJ, Bak Holm J, Kristiansen K, Simmons NB. Habitat fragmentation is associated with dietary shifts and microbiota variability in common vampire bats. Ecol Evol. 2019;9:6508–23.

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Aksoy E, Telleria EL, Echodu R, Wu Y, Okedi LM, Weiss BL, et al. Analysis of multiple tsetse fly populations in Uganda reveals limited diversity and species-specific gut microbiota. Appl Environ Microbiol. 2014;80:4301–12.

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • Mello RM, Laurindo RS, Silva LC, Pyles MV, Mancini MCS, Dáttilo W, et al. Landscape configuration and composition shape mutualistic and antagonistic interactions among plants, bats, and ectoparasites in human-dominated tropical rainforests. Acta Oecol. 2021;112:103769.

    Article 

    Google Scholar 

  • Cirimotich CM, Ramirez JL, Dimopoulos G. Native microbiota shape insect vector competence for human pathogens. Cell Host Microbe. 2011;10:307–10.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Sassera D, Epis S, Pajoro M, Bandi C. Microbial symbiosis and the control of vector-borne pathogens in tsetse flies, human lice, and triatomine bugs. Pathog Glob Health. 2013;107:285–92.

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Weiss BL, Wang J, Maltz MA, Wu Y, Aksoy S. Trypanosome infection establishment in the tsetse fly gut is influenced by microbiome-regulated host immune barriers. PLoS Pathog. 2013;9:e1003318.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Obame-Nkoghe J, Rahola N, Bourgarel M, Yangari P, Prugnolle F, Maganga GD, et al. Bat flies (Diptera: Nycteribiidae and Streblidae) infesting cave-dwelling bats in Gabon: diversity, dynamics and potential role in Polychromophilus melanipherus transmission. Parasit Vectors. 2016;9:333.

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • Krause AE, Frank KA, Mason DM, Ulanowicz RE, Taylor WW. Compartments revealed in food-web structure. Nature. 2003;426:282–5.

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Stouffer DB, Bascompte J. Understanding food-web persistence from local to global scales. Ecol Lett. 2010;13:154–61.

    PubMed 
    Article 

    Google Scholar 

  • Trowbridge RE, Dittmar K, Whiting MF. Identification and phylogenetic analysis of Arsenophonus– and Photorhabdus-type bacteria from adult Hippoboscidae and Streblidae (Hippoboscoidea). J Invertebr Pathol. 2006;91:64–68.

    PubMed 
    Article 

    Google Scholar 

  • Morse SF, Bush SE, Patterson BD, Dick CW, Gruwell ME, Dittmar K. Evolution, multiple acquisition, and localization of endosymbionts in bat flies (Diptera: Hippoboscoidea: Streblidae and Nycteribiidae). Appl Environ Microbiol. 2013;79:2952–61.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Wilkinson DA, Duron O, Cordonin C, Gomard Y, Ramasindrazana B, Mavingui P, et al. The bacteriome of bat flies (Nycteribiidae) from the Malagasy Region: a community shaped by host ecology, bacterial transmission mode, and host-vector specificity. Appl Environ Microbiol. 2016;82:1778–88.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Graciolli G, Dick CW. Checklist of World Nycteribiidae (Diptera: Hippoboscoidea). https://www.researchgate.net/publication/322579074_CHECKLIST_OF_WORLD_NYCTERIBIIDAE_DIPTERA_HIPPOBOSCOIDEA.

  • Graciolli G, Dick CW. Checklist of World Streblidae (Diptera: Hippoboscoidea). https://www.researchgate.net/publication/322578987_CHECKLIST_OF_WORLD_STREBLIDAE_DIPTERA_HIPPOBOSCOIDEA.

  • Breitschwerdt EB, Kordick DL. Bartonella infection in animals: carriership, reservoir potential, pathogenicity, and zoonotic potential for human infection. Clin Microbiol Rev. 2000;13:428–38.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Jiggins FM. Male-killing Wolbachia and mitochondrial DNA: selective sweeps, hybrid introgression and parasite population dynamics. Genetics. 2003;164:5–12.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Hosokawa T, Koga R, Kikuchi Y, Meng X-Y, Fukatsu T. Wolbachia as a bacteriocyte-associated nutritional mutualist. Proc Natl Acad Sci USA. 2010;107:769–74.

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Lack JB, Nichols RD, Wilson GM, Van Den Bussche RA. Genetic signature of reproductive manipulation in the phylogeography of the bat fly, Trichobius major. J Hered. 2011;102:705–18.

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Morse SF, Olival KJ, Kosoy M, Billeter S, Patterson BD, Dick CW, et al. Global distribution and genetic diversity of Bartonella in bat flies (Hippoboscoidea, Streblidae, Nycteribiidae). Infect Genet Evol. 2012;12:1717–23.

    PubMed 
    Article 

    Google Scholar 

  • Nikoh N, Hosokawa T, Moriyama M, Oshima K, Hattori M, Fukatsu T. Evolutionary origin of insect-Wolbachia nutritional mutualism. Proc Natl Acad Sci USA. 2014;111:10257–62.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Stuckey MJ, Chomel BB, de Fleurieu EC, Aguilar-Setién A, Boulouis H-J, Chang C-C. Bartonella, bats and bugs: A review. Comp Immunol Microbiol Infect Dis. 2017;55:20–29.

    PubMed 
    Article 

    Google Scholar 

  • Gibson CM, Hunter MS. Extraordinarily widespread and fantastically complex: comparative biology of endosymbiotic bacterial and fungal mutualists of insects. Ecol Lett. 2010;13:223–34.

    PubMed 
    Article 

    Google Scholar 


  • Source: Ecology - nature.com

    A global dataset of seaweed net primary productivity

    A strategy to assess spillover risk of bat SARS-related coronaviruses in Southeast Asia