in

Cell death responses to acute high light mediated by non-photochemical quenching in the dinoflagellate Karenia brevis

  • Brand, L. E., Campbell, L. & Bresnan, E. Karenia: The biology and ecology of a toxic genus. Harmful Algae 14, 156–178 (2012).

    Google Scholar 

  • Hetland, R. D. & Campbell, L. Convergent blooms of Karenia brevis along the Texas coast. Geophys. Res. Lett. 34, 1–5 (2007).

    Google Scholar 

  • Liu, G., Janowitz, G. S. & Kamykowski, D. A biophysical model of population dynamics of the autotrophic dinoflagellate Gymnodinium breve. Mar. Ecol. Prog. Ser. 210, 101–124 (2001).

    ADS 
    CAS 

    Google Scholar 

  • Walsh, J. J. et al. Red tides in the Gulf of Mexico: Where, when, and why?. J. Geophys. Res. 111, C11003 (2006).

    ADS 

    Google Scholar 

  • Bidle, K. D. The molecular ecophysiology of programmed cell death in marine phytoplankton. Ann. Rev. Mar. Sci. 7, 341–375 (2015).

    PubMed 

    Google Scholar 

  • Bidle, K. D. & Bender, S. J. Iron starvation and culture age activate metacaspases and programmed cell death in the marine diatom Thalassiosira pseudonana. Eukaryot. Cell 7, 223–236 (2008).

    CAS 
    PubMed 

    Google Scholar 

  • Bidle, K. D., Haramaty, L., Barcelos, R. J. & Falkowski, P. Viral activation and recruitment of metacaspases in the unicellular coccolithophore, Emiliania huxleyi. Proc. Natl. Acad. Sci. 104, 6049–6054 (2007).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Vardi, A. et al. Programmed cell death of the dinoflagellate Peridinium gatunense is mediated by CO2 limitation and oxidative stress. Curr. Biol. 9, 1061–1064 (1999).

    CAS 
    PubMed 

    Google Scholar 

  • Zuppini, A., Andreoli, C. & Baldan, B. Heat stress: An inducer of programmed cell death in Chlorella saccharophila. Plant Cell Physiol. 48, 1000–1009 (2007).

    CAS 
    PubMed 

    Google Scholar 

  • Britt, A. B. DNA damage and repair in plants. Annu. Rev. Plant Physiol. Plant Mol. Biol. 47, 75–100 (1996).

    CAS 
    PubMed 

    Google Scholar 

  • Jimenez, C. et al. Different ways to die: Cell death modes of the unicellular chlorophyte Dunaliella viridis exposed to various environmental stresses are mediated by the caspase-like activity DEVDase. J. Exp. Bot. 60, 815–828 (2009).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Moharikar, S., D’Souza, J. S., Kulkarni, A. B. & Rao, B. J. Apoptotic-like cell death pathway is induced in unicellular chlorophyte chlamydomonas reinhardtii (Chlorophyceae) cells following UV irradiation: Detection and functional analyses. J. Phycol. 42, 423–433 (2006).

    CAS 

    Google Scholar 

  • Li, Z., Wakao, S., Fischer, B. B. & Niyogi, K. K. Sensing and responding to excess light. Annu. Rev. Plant Biol. 60, 239–260 (2009).

    CAS 
    PubMed 

    Google Scholar 

  • Niyogi, K. K. Photoprotection revisited: Genetic and molecular approaches. Annu. Rev. Plant Physiol. Plant Mol. Biol. 50, 333–359 (1999).

    CAS 
    PubMed 

    Google Scholar 

  • Apel, K. & Hirt, H. Reactive oxygen species: Metabolism, Oxidative Stress, and Signal Transduction. Annu. Rev. Plant Biol. 55, 373–399 (2004).

    CAS 
    PubMed 

    Google Scholar 

  • Müller, P., Li, X. & Niyogi, K. K. Non-photochemical quenching. A response to excess light energy. Plant Physiol. 125, 1558–1566 (2001).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Bidle, K. D. Programmed cell death in unicellular phytoplankton. Curr. Biol. 26, R594–R607 (2016).

    CAS 
    PubMed 

    Google Scholar 

  • McKay, L., Kamykowski, D., Milligan, E., Schaeffer, B. & Sinclair, G. Comparison of swimming speed and photophysiological responses to different external conditions among three Karenia brevis strains. Harmful Algae 5, 623–636 (2006).

    CAS 

    Google Scholar 

  • Miller-Morey, J. S. & Van Dolah, F. M. Differential responses of stress proteins, antioxidant enzymes, and photosynthetic efficiency to physiological stresses in the Florida red tide dinoflagellate, Karenia brevis. Comp. Biochem. Physiol. Part C Toxicol. Pharmacol. 138, 493–505 (2004).

    Google Scholar 

  • Tilney, C. L., Shankar, S., Hubbard, K. A. & Corcoran, A. A. Is Karenia brevis really a low-light-adapted species?. Harmful Algae 90, 101709 (2019).

    CAS 
    PubMed 

    Google Scholar 

  • Yuasa, K., Shikata, T., Kuwahara, Y. & Nishiyama, Y. Adverse effects of strong light and nitrogen deficiency on cell viability, photosynthesis, and motility of the red-tide dinoflagellate Karenia mikimotoi. Phycologia 57, 525–533 (2018).

    CAS 

    Google Scholar 

  • Krause, G. H. & Jahns, P. Non-photochemical energy dissipation determined by chlorophyll fluorescence quenching: Characterization and function. In Chlorophyll a Fluorescence 463–495 (Springer, Netherlands, Cham, 2004).

    Google Scholar 

  • Evens, T. J. Photophysiological responses of the toxic red-tide dinoflagellate Gymnodinium breve (Dinophyceae) under natural sunlight. J. Plankton Res. 23, 1177–1194 (2001).

    CAS 

    Google Scholar 

  • Heil, C. A. et al. Influence of daylight surface aggregation behavior on nutrient cycling during a Karenia brevis (Davis) G. Hansen & Ø Moestrup bloom: Migration to the surface as a nutrient acquisition strategy. Harmful Algae 38, 86–94 (2014).

    CAS 

    Google Scholar 

  • Errera, R. Response of the Toxic Dinoflagellate Karenia Brevis to Current and Projected Environmental Conditions. (Texas A&M University, PhD dissertation, 2013).

  • Guillard, R. R. L. & Hargraves, P. E. Stichochrysis immobilis is a diatom, not a chrysophyte. Phycologia 32, 234–236 (1993).

    Google Scholar 

  • Dingman, J. E. & Lawrence, J. E. Heat-stress-induced programmed cell death in Heterosigma akashiwo (Raphidophyceae). Harmful Algae 16, 108–116 (2012).

    Google Scholar 

  • Lin, Q. et al. Differential cellular responses associated with oxidative stress and cell fate decision under nitrate and phosphate limitations in Thalassiosira pseudonana: Comparative proteomics. PLoS ONE 12(9), e0184849 (2017).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Choi, C. J., Brosnahan, M. L., Sehein, T. R., Anderson, D. M. & Erdner, D. L. Insights into the loss factors of phytoplankton blooms: The role of cell mortality in the decline of two inshore Alexandrium blooms. Limnol. Oceanogr. 62, 1742–1753 (2017).

    ADS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Johnson, J. G., Janech, M. G. & Van Dolah, F. M. Caspase-like activity during aging and cell death in the toxic dinoflagellate Karenia brevis. Harmful Algae 31, 41–53 (2014).

    CAS 
    PubMed 

    Google Scholar 

  • Jauzein, C. & Erdner, D. L. Stress-related responses in Alexandrium tamarense cells exposed to environmental Changes. J. Eukaryot. Microbiol. 60, 526–538 (2013).

    CAS 
    PubMed 

    Google Scholar 

  • Severin, T. & Erdner, D. L. The phytoplankton taxon-dependent oil response and its microbiome: Correlation but not causation. Front. Microbiol. 10, 1–14 (2019).

    Google Scholar 

  • Ralph, P. J. & Gademann, R. Rapid light curves: A powerful tool to assess photosynthetic activity. Aquat. Bot. 82, 222–237 (2005).

    CAS 

    Google Scholar 

  • Suzuki, N. & Mittler, R. Reactive oxygen species and temperature stresses: A delicate balance between signaling and destruction. Physiol. Plant. 126, 45–51 (2006).

    CAS 

    Google Scholar 

  • Krause, G. H. & Weis, E. Chlorophyll fluorescence and photosynthesis: The basics. Annu. Rev. Plant Physiol. Plant Mol. Biol. 42, 313–349 (1991).

    CAS 

    Google Scholar 

  • Gechev, T. S. & Hille, J. Hydrogen peroxide as a signal controlling plant programmed cell death. J. Cell Biol. 168, 17–20 (2005).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Miller, G., Suzuki, N., Ciftci-Yilmaz, S. & Mittler, R. Reactive oxygen species homeostasis and signalling during drought and salinity stresses. Plant. Cell Environ. 33, 453–467 (2010).

    CAS 
    PubMed 

    Google Scholar 

  • Purvis, A. C. Role of the alternative oxidase in limiting superoxide production by plant mitochondria. Physiol. Plant. 100, 165–170 (1997).

    CAS 

    Google Scholar 

  • Demmig-Adams, B. & Adams Iii, W. W. Photoprotection and other responses of plants to high light stress. Annu. Rev. Plant Biol. 43, 599–626 (1992).

    CAS 

    Google Scholar 

  • Cui, Y., Zhang, H. & Lin, S. Enhancement of non-photochemical quenching as an adaptive strategy under phosphorus deprivation in the Dinoflagellate Karlodinium veneficum. Front. Microbiol. 8, 1–14 (2017).

    Google Scholar 

  • Cassell, R. T., Chen, W., Thomas, S., Liu, L. & Rein, K. S. Brevetoxin, the dinoflagellate neurotoxin, localizes to thylakoid membranes and interacts with the light-harvesting complex II (LHCII) of photosystem II. ChemBioChem 16, 1060–1067 (2015).

    CAS 
    PubMed 

    Google Scholar 

  • Milne, A., Davey, M. S., Worsfold, P. J., Achterberg, E. P. & Taylor, A. R. Real-time detection of reactive oxygen species generation by marine phytoplankton using flow injection-chemiluminescence. Limnol. Oceanogr. Methods 7, 706–715 (2009).

    CAS 

    Google Scholar 

  • Berman-Frank, I. et al. Segregation of nitrogen fixation and oxygenic photosynthesis in the marine cyanobacterium trichodesmium. Science (80-) 294, 1534–1537 (2001).

    ADS 
    CAS 

    Google Scholar 

  • Triantaphylidès, C. et al. Singlet oxygen is the major reactive oxygen species involved in photooxidative damage to plants. Plant Physiol. 148, 960–968 (2008).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Gao, Y. & Erdner, D. L. Dynamics of cell death across growth stages and the diel cycle in the dinoflagellate Karenia brevis. J. Eukaryot. Microbiol. https://doi.org/10.1111/jeu.12874 (2021).

    Article 
    PubMed 

    Google Scholar 

  • Xu, K., Jiang, H., Juneau, P. & Qiu, B. Comparative studies on the photosynthetic responses of three freshwater phytoplankton species to temperature and light regimes. J. Appl. Phycol. 24, 1113–1122 (2012).

    CAS 

    Google Scholar 

  • Yamori, W., Makino, A. & Shikanai, T. A physiological role of cyclic electron transport around photosystem I in sustaining photosynthesis under fluctuating light in rice. Sci. Rep. 6, 20147 (2016).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Berman-Frank, I., Bidle, K. D., Haramaty, L. & Falkowski, P. G. The demise of the marine cyanobacterium, Trichodesmium spp., via an autocatalyzed cell death pathway. Limnol. Oceanogr. 49, 997–1005 (2004).

    ADS 

    Google Scholar 


  • Source: Ecology - nature.com

    A dataset of road-killed vertebrates collected via citizen science from 2014–2020

    Permian hypercarnivore suggests dental complexity among early amniotes