in

Changes in plant biodiversity facets of rocky outcrops and their surrounding rangelands across precipitation and soil gradients

  • Larson, D. W., Matthes, U. & Kelly, P. E. Cliff Ecology (Cambridge University Press, 2000).

    Book 

    Google Scholar 

  • Cooper, A. Plant species coexistence in cliff habitats. J. Biogeogr. 24, 483–494 (1997).

    Article 

    Google Scholar 

  • Davis, P. H. Cliff vegetation in the eastern Mediterranean. J. Ecol. 39, 63–93 (1951).

    Article 

    Google Scholar 

  • Snogerup, S. Evolutionary and plant geographical aspects of chasmophytic communities. In Plant life of South-West Asia (eds Davis, P. H. et al.) 157–170 (Bot. Soc. Edinb, 1971).

    Google Scholar 

  • Baskin, J. M. & Baskin, C. C. Endemism in rock outcrop plant communities of unglaciated eastern United States: An evaluation of the roles of the edaphic, genetic and light factors. J. Biogeogr. 15, 829–840 (1988).

    Article 

    Google Scholar 

  • Medina, B. M. O. & Fernandes, G. W. The potential of natural regeneration of rocky outcrop vegetation on rupestrian field soils in Serra do Cipo, Brazil. Braz. J. Bot. 30, 665–678 (2007).

    Article 

    Google Scholar 

  • Alves, R. J. V., Cardin, L. & Kropf, M. S. Angiosperm disjunction “Campos Rupestres-Restingas”: Are-evaluation. Acta Bot. Bras. 2, 675–685 (2007).

    Article 

    Google Scholar 

  • Harley, R. M. Introduction. In Flora of the Pico das Almas, Chapada Diamantina, Bahia, Brazil (eds Stannard, B. L., Harvey, Y. B. & Harley, R. M) 1–42 (Royal Botanic Gardens, 1995).

  • Hubbell, S. P. Neutral theory in ecology and the evolution of ecological equivalence. Ecology 87, 1387–1398 (2006).

    PubMed 
    Article 

    Google Scholar 

  • Conceição, A. A., Pirani, J. R. & Meirelles, S. T. Floristics, structure and soil of insular vegetation in four quartzite-sandstone outcrops of “Chapada Diamantina”, Northeast Brazil. Rev. Bras. Bot. 30, 641–656 (2007).

    Article 

    Google Scholar 

  • Le Stradic, S., Buisson, E. & Wilson, F. G. Vegetation composition and structure of some Neotropical mountain grasslands in Brazil. J Mt Sci 12:864–77. An. Acad. Bras. Ciênc. 87(4), 2097–2110 (2015).

    Article 
    CAS 

    Google Scholar 

  • Nunes, J. A. et al. Soil–vegetation relationships on a banded ironstone ‘island’, Carajás Plateau, Brazilian Eastern Amazonia. An. Acad. Bras. Cienc. 87(4), 2097–2110 (2015).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Silva, W. A. Gradiente vegetacional e pedológico em complexo rupestre de quartzito no Quadrilátero Ferrífero, Minas Gerais, Brasil. MSc Thesis. (Universidade Federal de Viçosa, 2013).

  • Vincent, R. C. & Meguro, M. Influence of soil properties on the abundance of plant species in ferruginous rocky soils vegetation, southeastern Brazil. Braz. J. Bot. 31, 377–388 (2008).

    Article 

    Google Scholar 

  • Porembski, S. Tropical inselbergs: Habitat types, adaptive strategies and diversity patterns. Rev. Bras. de Bot. 30, 579–586 (2007).

    Article 

    Google Scholar 

  • De Paula, L. F. A., Forzza, R. C., Neri, A. V., Bueno, M. L. & Porembski, S. Sugar Loaf Land in south-eastern Brazil: A center of diversity for mat-forming bromeliads on inselbergs. Bot. J. Linn. Soc. 181, 459–476 (2016).

    Article 

    Google Scholar 

  • Rezende, M. G., Elias, R. C. L., Salimena, F. R. G. & Neto, L. M. Flora vascular da Serra da Pedra Branca, Caldas, Minas Gerais e relações florísticas com áreas de altitude da Região Sudeste do Brasil. Biota Neotrop. 13, 201–224 (2013).

    Article 

    Google Scholar 

  • Sarthou, C., Villiers, J. F. & Ponge, J. F. Shrub vegetation on tropical granitic inselbergs in French Guiana. J. Veg. Sci. 14, 645–652 (2003).

    Article 

    Google Scholar 

  • Tinti, B. V. et al. Plant diversity on granite/gneiss rock outcrop at Pedra do Pato, Serra do Brigadeiro State Park, Brazil. Check List 11, 1780 (2015).

    Article 

    Google Scholar 

  • Barbara, T., Martinelli, G., Fay, M. F., Mayo, S. J. & Lexer, C. Population differentiation and species cohesion in two closely related plants adapted to neotropical high-altitude “inselbergs”, Alcantarea imperialis and Alcantarea geniculata (Bromeliaceae). Mol. Ecol. 16, 1981–1992 (2007).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Boisselier-Dubayle, M. C., Leblois, R., Samadi, S., Lambourdière, J. & Sarthou, C. Genetic structure of the xerophilous bromeliad Pitcairnia geyskesii on inselbergs in French Guiana—A test of the forest refuge hypothesis. Ecography 33, 175–184 (2010).

    Article 

    Google Scholar 

  • Domingues, R. et al. Genetic variability of an endangered Bromeliaceae species (Pitcairnia albiflos) from the Brazilian Atlantic rainforest. Genet. Mol. Res. 10, 2482–2491 (2011).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Hmeljevski, K. V. et al. Conservation assessment of an extremely restricted bromeliad highlights the need for population-based conservation on granitic inselbergs of the Brazilian Atlantic Forest. Flora Morpho. Distribut. Funct. Ecolo. Plants. 209, 250–259 (2014).

    Article 

    Google Scholar 

  • Palma-Silva, C. et al. Sympatric bromeliad species (Pitcairnia spp.) facilitate tests of mechanisms involved in species cohesion and reproductive isolation in Neotropical inselbergs. Mol. Ecol. 20, 3185–3201 (2011).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Gomes, P. & Alves, M. Floristic diversity of two crystalline rocky outcrops in the Brazilian northeast semi-arid region. Rev. Bras. Bot. 33(4), 661–676 (2010).

    Article 

    Google Scholar 

  • Nunes, J. A., Villa, P. M., Neri, A. V., Silva, W. A. & Schaefer, C. E. G. R. Seasonality drives herbaceous community beta diversity in lithologically different rocky outcrops in Brazil. Plant. Ecol. Evol. 153(2), 208–218 (2020).

    Article 

    Google Scholar 

  • Speziale, K. L. & Ezcurra, C. The role of outcrops in the diversity of Patagonian vegetation: Relicts of glacial palaeofloras?. Flora Morphol. Distrib. Funct. Ecol. Plant. 207, 141–149 (2012).

    Google Scholar 

  • Speziale, K. L., Ruggiero, A. & Ezcurra, C. Plant species richness–environment relationships across the Subantarctic-Patagonian transition zone. J. Biogeogr. 37, 449–464 (2010).

    Article 

    Google Scholar 

  • Yates, C. J. et al. High species diversity and turnover in granite inselberg floras highlight the need for a conservation strategy protecting many outcrops. Ecol. Evol. 9, 7660–7675 (2019).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Gaston, K. J. Geographic range limits: Achieving synthesis. Proc. R. Soc. B Biol. Sci. 276, 1395–1406 (2009).

    Article 

    Google Scholar 

  • McGann, T. D. How insular are ecological ‘islands’? An example from the granitic outcrops of the New England Batholith of Australia. Proc. R. Soc. Queensland. 110, 1–13 (2002).

    Google Scholar 

  • Parmentier, I., Stévart, T. & Hardy, O. J. The inselberg flora of Atlantic Central Africa. I. Determinants of species assemblages. J. Biogeogr. 32, 685–696 (2005).

    Article 

    Google Scholar 

  • Changwe, K. & Balkwill, K. Floristics of the Dunbar Valley serpentinite site, Songimvelo Game Reserve, South Africa. Bot. J. Linn. Soc. 143, 271–285 (2003).

    Article 

    Google Scholar 

  • Clarke, P. J. Habitat islands in fire-prone vegetation: Do landscape features influence community composition?. J. Biogeogr. 29, 677–684 (2002).

    Article 

    Google Scholar 

  • De Bello, F., Leps, J. & Sebastia, M. T. Variations in species and functional plant diversity along climatic and grazing gradients. Ecography 29(6), 801–810 (2006).

    Article 

    Google Scholar 

  • Porembski, S., Martinelli, G., Ohlemüller, R. & Barthlott, W. Diversity and ecology of saxicolous vegetation mats on inselbergs in the Brazilian Atlantic rainforest. Divers. Distrib. 4, 107–119 (1998).

    Article 

    Google Scholar 

  • Porembski, S., Szarzynski, J., Mund, J. P. & Barthlott, W. Biodiversity and vegetation of small-sized inselbergs in a West African rain forest (Taï, Ivory Coast). J. Biogeogr. 23, 47–55 (1996).

    Article 

    Google Scholar 

  • Rahmanian, S. et al. Effects of livestock grazing on soil, plant functional diversity, and ecological traits vary between regions with different climates in northeastern Iran. Ecol. Evol. 9, 8225–8237 (2019).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Speziale, K. L. & Ezcurra, C. Patterns of alien plant invasions in northwestern Patagonia, Argentina. J. Arid Environ. 75, 890–897 (2011).

    ADS 
    Article 

    Google Scholar 

  • Qian, H., Chen, S. H. & Zhang, J. L. Disentangling environmental and spatial effects on phylogenetic structure of angiosperm tree communities in China. Sci. Rep. 7, 5864 (2017).

    ADS 
    Article 
    CAS 

    Google Scholar 

  • Farzam, M. & Ejtehadi, H. Effects of drought and canopy facilitation on plant diversity and abundance in a semiarid mountainous rangeland. J. Plant. Ecol. 10(4), 626–633 (2016).

    Google Scholar 

  • Heino, J. & Tolonen, K. T. Ecological drivers of multiple facets of beta diversity in a lentic macroinvertebrate metacommunity. Limnol. Oceanogr. 62, 2431–2444. https://doi.org/10.1002/lno.10577 (2017).

    ADS 
    Article 

    Google Scholar 

  • Miranda, J. D., Armas, C., Padilla, F. M. & Pugnaire, F. I. Climatic change and rainfall patterns: Effects on semi-arid plant communities of the Iberian Southeast. J. Arid. Environ. 75, 1302–1309 (2011).

    ADS 
    Article 

    Google Scholar 

  • Pashirzad, M., Ejtehadi, H., Vaezi, J. & Shefferson, R. P. Multiple processes at different spatial scales determine beta diversity patterns in a mountainous semi-arid rangeland of Khorassan-Kopet Dagh floristic province, NE Iran. Plant. Ecol. 220(9), 829–844 (2019).

    Article 

    Google Scholar 

  • Victorero, L., Robert, K., Robinson, L. F., Taylor, M. L. & Huvenne, V. A. I. Species replacement dominates megabenthos beta diversity in a remote seamount setting. Sci. Rep. 8, 4152 (2018).

    ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • Deil, U. Rock communities in tropical Arabia. Flora et Vegetation Mundi 9, 175–187 (1991).

    Google Scholar 

  • Dimopoulos, P., Sýkora, K. V., Mucina, L. & Georgiadis, T. The high-rank syntaxa of the rock-cliff and scree vegetation of the mainland Greece and Crete. Folia Geobot. 32, 313–334 (1997).

    Article 

    Google Scholar 

  • Hein, P., Kürschner, H. & Parolly, G. Phytosociological studies on high mountain plant communities of the Taurus Mountains (Turkey) 2. Rock communities. Phytocoenologia 28, 465–563 (1998).

    Article 

    Google Scholar 

  • Nowak, A., Nowak, S., Nobis, M. & Nobis, A. Vegetation of rock clefts and ledges in the Pamir Alai Mts, Tajikistan (Middle Asia). Cent. Eur. J. Biol. 9, 444–460 (2014).

    Google Scholar 

  • Urbis, A. & Blazyca, B. Rock vascular plant species of the Kraków-Częstochowa, Uplands. Thaiszia J. Bot. 21, 207–214 (2011).

    Google Scholar 

  • Wiser, S. K., Peet, R. K. & White, P. S. High-elevation rock outcrop vegetation of the Southern Appalachian Mountains. J. Veg. Sci. 7, 703–722 (1996).

    Article 

    Google Scholar 

  • Cadotte, M. W. Experimental evidence that evolutionarily diverse assemblages result in higher productivity. PNAS 110(22), 8996–9000 (2013).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Swenson, G.N. Functional and Phylogenetic Ecology in R (Use R!) Kindle Edition (2014).

  • Cadotte, M. W. & Davies, P. R. Why phylogenies do not always predict ecological differences. Ecol. Monogr. 87(4), 535–551 (2016).

    Article 

    Google Scholar 

  • De Bello, F., LepŠ, J. A. N. & Sebastià, M. T. Predictive value of plant traits to grazing along a climatic gradient in the Mediterranean. J. Appl. Ecol. 42(5), 824–833 (2005).

    Article 

    Google Scholar 

  • Funk, J. et al. Revisiting the Holy Grail: Using plant functional traits to understand ecologica processes. Biol. Rev. 92(2), 1156–1173 (2017).

    PubMed 
    Article 

    Google Scholar 

  • Lavorel, S. & Garnier, É. Predicting changes in community composition and ecosystem functioning from plant traits: Revisiting the Holy Grail. Funct. Ecol. 16(5), 545–556 (2002).

    Article 

    Google Scholar 

  • Violle, C. et al. Let the concept of trait be functional!. Oikos 116, 882–892 (2007).

    Article 

    Google Scholar 

  • Zheng, S., Li, W., Lan, Z., Ren, H. & Wang, K. Functional trait responses to grazing are mediated by soil moisture and plant functional group identity. Sci. Rep. 5, 18163 (2015).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Gillison, A. N. Plant functional types and traits at the community, ecosystem and world level. In Vegetation Ecology (eds van der Maarel, E. & Franklin, J.) 347–386 (Wiley, 2013).

    Chapter 

    Google Scholar 

  • Loreau, M. Biodiversity and ecosystem functioning: Recent theoretical advances. Oikos 91, 3–17 (2000).

    Article 

    Google Scholar 

  • Akhani, H., Djamali, M., Ghorbanalizadeh, A. & Ramezani, E. Plant biodiversity of Hyrcanian relict forests, N Iran: An overview of the flora, vegetation, paleoecology and conservation. Pak. J. Bot. 42, 231–258 (2010).

    Google Scholar 

  • Hamzehee, B. et al. Phytosociological survey of remnant Alnus glutinosa ssp. barbata communities in the lowland Caspian forests of northern Iran. Pytocoenologia. 38, 117–132 (2008).

    Article 

    Google Scholar 

  • Moradi, H. et al. Elevational gradient and vegetation-environmental relationships in the central Hyrcanian forests of northern Iran. Nord. J. Bot. 34, 1–14 (2016).

    Article 

    Google Scholar 

  • Naqinezhad, A., Esmailpoor, A. & Jafari, N. A new record of Pyrola minor (Pyrolaceae) for the flora of Iran as well as a description of its surrounding habitats. Taxon. Biosyst. 22, 71–80 (2015).

    Google Scholar 

  • Naqinezhad, A., Zare-Maivan, H. & Gholizadeh, H. A floristic survey of the Hyrcanian forests in Northern Iran, using two lowland-mountain transects. J. For. Res. 26, 187–199 (2015).

    CAS 
    Article 

    Google Scholar 

  • Sagheb-Talebi, K., Sajedi, T. & Pourhashemi, M. Forests of Iran (Springer Sci, 2014).

    Book 

    Google Scholar 

  • Siadati, S. et al. Botanical diversity of Hyrcanian forests; a case study of a transect in the Kheyrud protected lowland mountain forests in northern Iran. Phytotaxa 7, 1–18 (2010).

    Article 

    Google Scholar 

  • Akhani, H. & Ziegler, H. Photosynthetic pathways and habitats of grasses in Golestan National Park (NE Iran), with an emphasis on the C 4-grass dominated rock communities. Phytocoenologia 32, 455–501 (2002).

    Article 

    Google Scholar 

  • Akhani, H., Mahdavi, P., Noroozi, J. & Zarrinpour, V. Vegetation patterns of the Irano-Turanian steppe along a 3,000 m altitudinal gradient in the Alborz Mountains of Northern Iran. Folia Geobot. 48, 229–255 (2013).

    Article 

    Google Scholar 

  • Klein, J. C. The altitudinal vegetation Alborez The Central (Iran) between the Iranian-Turanian and Euro-Siberian regions (French) (Institut Français de Recherche en Iran, 2001).

    Google Scholar 

  • Noroozi, J. Case study: High Mountain Regions in Iran 255–260. of Chapter 7 (Endemism in mainland regions-case studies). In Endemism in Vascular plants. Plant. Veg. (ed Hobohm, C.) 9. (Springer, 2014).

  • Noroozi, J., Akhani, H. & Willner, W. Phytosociological and ecological study of the high alpine vegetation of Tuchal Mountains (Central Alborz, Iran). Phytocoenologia 40, 293–321 (2010).

    Article 

    Google Scholar 

  • Do Carmo, F. F. & Jacobi, C. M. Diversity and plant trait-soil relationships among rock outcrops in the Brazilian Atlantic rainforest. Plant Soil. 403, 7–20 (2015).

    Article 
    CAS 

    Google Scholar 

  • Cavender-Bares, J., Kozak, K. H., Fine, P. V. A. & Kembel, S. The merging of community ecology and phylogenetic biology. Ecol Lett. 12, 693–715 (2009).

    PubMed 
    Article 

    Google Scholar 

  • Heydari, M., Poorbabaei, H., Esmailzadeh, O., Salehi, A. & EshaghiRad, J. Indicator plant species in monitoring forest soil conditions using logistic regression model in Zagros Oak (Quercus brantii var. persica) forest ecosystems. Ilam city. J. Plant Res. 27(5), 811–828 (2014).

    Google Scholar 

  • Speziale, K. L. & Ezcurra, C. Rock outcrops as potential biodiversity refugia under climate change in North Patagonia. Plant Ecol. Diver. 8, 353–361 (2014).

    Article 

    Google Scholar 

  • Rahmanian, S. et al. Effects of livestock grazing on plant species diversity vary along a climatic gradient in northeastern Iran. Appl. Veg. Sci. 23, 551–561 (2020).

    Article 

    Google Scholar 

  • Huston, M. A. Biological Diversity: The Coexistence of Species in Changing Landscape (Cambridge University, 1994).

    Google Scholar 

  • Mason, N. W., Mouillot, D. & Lee, W. G. Functional richness, functional evenness and functional divergence: The primary components of functional diversity. Oikos 111, 112–118 (2005).

    Article 

    Google Scholar 

  • Stubbs, W. J. & Wilson, J. B. Evidence for limiting similarity in a sand dune community. J. Ecol. 92, 557567 (2004).

    Article 

    Google Scholar 

  • Stanisci, A. et al. Functional composition and diversity of leaf traits in subalpine versus alpine vegetation in the Apennines. Ann. Bot. Comp. plants. 12, plaa004 (2020).

    CAS 

    Google Scholar 

  • Chesson, P. et al. Resource pulses, species interactions, and diversity maintenance in arid and semi-arid environments. Oecologia 141, 236–253 (2004).

    ADS 
    PubMed 
    Article 

    Google Scholar 

  • Rosbakh, S. et al. Contrasting effects of extreme drought and snowmelt patterns on mountain plants along an elevation gradient. Front. Plant Sci. 8, 1478 (2017).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Korner, C. Alpine Treelines: Functional Ecology of the Global High Elevation tree Limits (Springer Sci. & Business Media, 2012).

    Book 

    Google Scholar 

  • Reich, P. B. et al. Generality of leaf trait relationships: A test across six biomes. Ecology 80, 1955–1969 (1999).

    Article 

    Google Scholar 

  • Westoby, M., Falster, D. S., Moles, A. T., Vesk, P. A. & Wright, I. J. Plant ecological strategies: Some leading dimensions of variation between species. Ann. Rev. Ecol. Syst. 33, 125–159 (2002).

    Article 

    Google Scholar 

  • Hautier, Y., Niklaus, P. A. & Hector, A. Competition for light causes plant biodiversity loss after eutrophication. Science 324, 636–638 (2009).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 

  • De Bello, F. D. et al. Hierarchical effects of environmental filters on the functional structure of plant communities: A case study in the French Alps. Ecography 36, 393–402 (2013).

    Article 

    Google Scholar 

  • Korner, C., Neumayer, M., Menendez-Riedl, S. P. & Smeets-Scheel, A. Functional morphology of mountain plants. Flora 182, 353–383 (1989).

    Article 

    Google Scholar 

  • Rosbakh, S., Römermann, C. & Poschlod, P. Specific leaf area correlates with temperature new evidence of trait variation at the population, species and community levels. Alp. Bot. 125, 79–86 (2015).

    Article 

    Google Scholar 

  • Ordonez, J. C. et al. Global study of relationships between leaf traits, climate and soil measures of nutrient fertility. Glob. Ecol. Biogeogr. 18, 137–149 (2009).

    Article 

    Google Scholar 

  • Li, W. et al. Community-weighted mean traits but not functional diversity determine the changes in soil properties during wetland drying on the Tibetan Plateau. Solid Earth. 8, 137–147 (2017).

    ADS 
    Article 

    Google Scholar 

  • Bardgett, R. D., Mommer, L. & De Vries, F. T. Going underground: Root traits as drivers of ecosystem processes. Trends Ecol. Evol. 29, 692–699 (2014).

    PubMed 
    Article 

    Google Scholar 

  • Lane, D. R., Coffin, D. P. & Lauenroth, W. K. Effects of soil texture and precipitation on above-ground net primary productivity and vegetation structure across the Central Grassland region of the United States. J. Veg. Sci. 9, 239–250 (1998).

    Article 

    Google Scholar 

  • Noy-Meir, I. Multivariate analysis of the semi-arid vegetation of southern Australia. II. Vegetation catenae an environmental gradients. Aust. J. Bot. 22, 40–115 (1973).

    Google Scholar 

  • Moura, M. R., Villalobos, F., Costa, G. C. & Garcia, P. C. A. Disentangling the role of climate, topography and vegetation in species richness gradients. PLoS ONE 11(3), 0152468 (2016).

    Article 
    CAS 

    Google Scholar 

  • Neri, A. V. et al. Soil and altitude drives diversity and functioning of Brazilian Páramos (Campo de Altitude). J. plant. Ecol. 10(5), 771–779 (2016).

    Google Scholar 

  • Benites, V. M., Schaefer, C. E. G. R., Simas, F. N. B., Santos, H. G. & Mendonca, B. A. F. Soils associated to rock outcrops in the Brazilian mountain ranges Mantiqueira and Espinhaço. Rev. Bras. Bot. 30, 569–577 (2007).

    Article 

    Google Scholar 

  • Flynn, D. F. B. et al. Loss of functional diversity under land use intensification across multiple taxa. Ecol. Lett. 12, 22–33 (2009).

    PubMed 
    Article 

    Google Scholar 

  • Zuo, X. A. et al. Testing associations of plant functional diversity with along a restoration gradient of sandy grassland. Front. Plant. Sci. 7, 1–11 (2016).

    ADS 
    Article 

    Google Scholar 

  • Myers-Smith, I. H. et al. Shrub expansion in tundra ecosystems: Dynamics, impacts and research priorities. Environ. Res. Lett. 6, 045509 (2011).

    ADS 
    Article 

    Google Scholar 

  • Vankoughnett, M. R. & Grogan, P. Nitrogen isotope tracer acquisition in low and tall birch tundra plant communities: A 2-year test of the snow–shrub hypothesis. Biogeochemistry 118, 291–306 (2014).

    CAS 
    Article 

    Google Scholar 

  • Pescador, D. S., de Bello, F., Valladares, F. & Escudero, A. Plant trait variation along an altitudinal gradient in Mediterranean high mountain grasslands: Controlling the species turnover effect. PLoS ONE 10, e0118876 (2015).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • Pescador, D. S., Sierra-Almeida, A., Torres, P. J. & Escudero, A. Summer freezing resistance: A critical filter for plant community assemblies in Mediterranean high mountains. Front. Plant. Sci. 7, 194 (2016).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Heydarnejad, S. & Ranjbar, A. Investigation of the effect of salinity stress on growth characteristic and ion accumulation in plants. J. Desert Ecos. Eng. 3(4), 1–10 (2013).

    Google Scholar 

  • Perez-Harguindeguy, N. et al. New handbook for standardized measurement of plant functional traits worldwide. Aust. J. Bot. 61, 167–234 (2013).

    Article 

    Google Scholar 

  • Cornelissen, J. H. C. et al. A handbook of protocols for standardised and easy measurement of plant functional traits worldwide. Aust. J. Bot. 51, 335–380 (2003).

    Article 

    Google Scholar 

  • Raunkiaer, C. The Life Forms of Plants and Statistical Plant Geography (Oxford University Press, 1934).

    Google Scholar 

  • Gee, G. W. & Bauder, J. W. Particle size analysis. In Methods of Soil Analysis. Part 1, 2nd ed. (ed Klute, A.) Agronomy Monographs, Vol. 9, 383–409 (Am. Soc. Agr., 1986).

  • Bremner, J. M. In Nitrogen-Total Methods of Soil Analysis. (eds Sparks, D. L.) Soil Sci Soc Am J. 1085–1122 (Am Soc Agr. Inc, 1996).

  • Walkley, A. & Black, I. A. An examination of the Degtjareff method for determining soil organic matter, and a proposed modification of the chromic acid titration method. Soil Sci. 37, 29–38 (1934).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • Nelson, D. W. & Sommers, L. Total carbon, organic carbon, and organic matter 1. Methods of soil analysis. Part 2. Chemical and microbi‐ological properties, (methodsofsoilan2), 539–579 (1982).

  • Miller, R. H. & Keeney, D. R. Methods of soil analysis, 2nd ed. In Part 2. Chemical and Microbiological Properties (eds Page, A. L. et al.) 1–129 (ASA, SSSA, 1982).

    Google Scholar 

  • Food and Agriculture Organization-FAO. Management of gypsiferous soils. Soil Bulletin, 62, (FAO, 1990).

  • Chao, A. et al. Rarefaction and extrapolation with Hill numbers: A framework for sampling and estimation in species diversity studies. Ecol. Monogr. 84, 45–67 (2014).

    Article 

    Google Scholar 

  • Shipley, B., Vile, D. & Garnier, É. from plant traits to plant communities: A statistica mechanistic approach to biodiversity. Science 314(5800), 812–814 (2006).

    ADS 
    MathSciNet 
    CAS 
    PubMed 
    MATH 
    Article 

    Google Scholar 

  • Zhu, J., Jiang, L. & Zhang, Y. Relationships between functional diversity and aboveground biomass production in the Northern Tibetan alpine grasslands. Sci. Rep. 6, 34105 (2016).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Laliberte, E. & Legendre, P. A distance-based framework for measuring functional diversity from multiple traits. Ecology 91(1), 299–305 (2010).

    PubMed 
    Article 

    Google Scholar 

  • Wheeler, D. & Tiefelsdorf, M. Multicollinearity and correlation among local regression coefficients in geographically weighted regression. J. Geogr. Syst. 7, 161–187 (2005).

    Article 

    Google Scholar 

  • Fox, J. & Weisberg, S. A review of: an R companion to applied regression, second edition. J. Biopharm. Stat. 22, 418–419 (2011).

    Google Scholar 

  • Brien, R. M. A caution regarding rules of thumb for variance inflation factors. Qual. Quant. 41, 673–690 (2007).

    Article 

    Google Scholar 

  • Dray, S., Legendre, P. & Blanchet, F. G. packfor: forward selection with permutation (Canoco p. 46). (2011) http://R-Forge.R-project.org/projects/sedar (Accessed 7 Nov 2016).

  • Blanchet, F. G., Legendre, P. & Borcard, D. Forward selection of explanatory variables. Ecology 89, 2623–2632 (2008).

    PubMed 
    Article 

    Google Scholar 

  • Oksanen, J. et al. vegan: Community Ecology Package (2017).

  • Wickham, H. et al. Ggplot2: Elegant Graphics for Data Analysis 2nd edn. (Springer International Publishing, 2016).

    MATH 
    Book 

    Google Scholar 


  • Source: Ecology - nature.com

    “The world needs your smarts, your skills,” Ngozi Okonjo-Iweala tells MIT’s Class of 2022

    Optimal Channel Networks accurately model ecologically-relevant geomorphological features of branching river networks