in

Changes in soil carbon mineralization related to earthworm activity depend on the time since inoculation and their density in soil

  • Amelung, W. et al. Towards a global-scale soil climate mitigation strategy. Nat. Commun. 11, 5427 (2020).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • Blouin, M. et al. A review of earthworm impact on soil function and ecosystem services. Eur. J. Soil Sci. 64(2), 161–182. https://doi.org/10.1111/ejss.12025 (2013).

    Article 

    Google Scholar 

  • Deckmyn, G. et al. KEYLINK: Towards a more integrative soil representation for inclusion in ecosystem scale models I. Review and model concept. PeerJ 8, 9750. https://doi.org/10.7717/peerj.9750 (2020).

    Article 

    Google Scholar 

  • Phillips, H. R. P. et al. Global distribution of earthworm diversity. Science 366, 6464. https://doi.org/10.1126/science.aax4851 (2019).

    CAS 
    Article 

    Google Scholar 

  • Bertrand, M. et al. Earthworm services for cropping systems. A review. Agron. Sustain. Dev. 35, 553–567 (2015).

    CAS 
    Article 

    Google Scholar 

  • Angst, G. et al. Earthworms act as biochemical reactors to convert labile plant compounds into stabilized soil microbial necromass. Commun. Biol. 2, UNSP 441 (2019).

    Article 

    Google Scholar 

  • Bohlen, P. J. & Edwards, C. A. Earthworm effects on N dynamics and soil respiration in microcosms receiving organic and inorganic nutrients. Soil Biol. Biochem. 27, 341–348 (1995).

    CAS 
    Article 

    Google Scholar 

  • Bossuyt, H., Six, J. & Hendrix, P. F. Protection of soil carbon by microaggregates within earthworm casts. Soil Biol. Biochem. 37, 251–258 (2005).

    CAS 
    Article 

    Google Scholar 

  • Lubbers, I. M. et al. Greenhouse-gas emissions from soils increased by earthworms. Nat. Clim. Change 3, 187–194 (2013).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • Huang, W., Gonzalez, G. & Zou, X. M. Earthworm abundance and functional group diversity regulate plant litter decay and soil organic carbon level: A global meta-analysis. Appl. Soil Ecol. 150, 103473. https://doi.org/10.1016/j.apsoil.2019.103473 (2020).

    Article 

    Google Scholar 

  • Kruck, S., Joschko, M., Schultz-Sternberg, R., Kroschewski, B. & Tessmann, J. A classification scheme for earthworm populations (Lumbricidae) in cultivated agricultural soils in Brandenburg, Germany. J. Plan Nutr. Soil Sci. 169, 651–660 (2006).

    Article 

    Google Scholar 

  • Westernacher, E. & Raff, O. Orientation behaviour of earthworms (Lumbricidae) toward different crops. Biol. Fertil. Soils 3, 131–133 (1987).

    Google Scholar 

  • Coppens, F., Garnier, P., Degryze, S., Merckx, R. & Recous, S. Soil moisture, carbon and nitrogen dynamics following incorporation versus surface application of labelled residues in soil columns. Eur. J. Soil Sci. 57, 894–905 (2006).

    CAS 
    Article 

    Google Scholar 

  • Angers, D. A. & Recous, S. Decomposition of wheat straw and rye residues as affected by particle size. Plant Soil 189, 197–203 (1997).

    CAS 
    Article 

    Google Scholar 

  • Iqbal, A., Garnier, P., Lashermes, G. & Recous, S. A new equation to simulate the contact between soil and maize residues of different sizes during their decomposition. Biol. Fertil. Soils 50, 645–655 (2014).

    CAS 
    Article 

    Google Scholar 

  • Šimek, M. & Pižl, V. Soil CO2 flux affected by Aporrectodea caliginosa earthworms. Cent. Eur. J. Biol. 5, 364–370 (2010).

    Google Scholar 

  • Potthoff, M., Joergensenb, R. G. & Woltersc, V. Short-term effects of earthworm activity and straw amendment on the microbial C and N turnover in a remoistened arable soil after summer drought. Soil Biol. Biochem. 33, 583–591 (2001).

    CAS 
    Article 

    Google Scholar 

  • Bernard, L. et al. Endogeic earthworms shape bacterial functional communities and affect organic matter mineralization in a tropical soil. ISME J. 6, 213–122 (2012).

    CAS 
    Article 

    Google Scholar 

  • Borken, W., Gründel, S. & Beese, F. Potential contribution of Lumbricus terrestris L. to carbon dioxide, methane and nitrous oxide fluxes from a forest soil. Biol. Fertil. Soils 32, 142–148 (2000).

    CAS 
    Article 

    Google Scholar 

  • Martin, A. Short-term and long-term effects of the endogeic earthworm Millsonia anomala (Omodeo) (Megascolecidae, Oligochaeta) of tropical savannas, on soil organic matter. Biol. Fertil. Soils 11, 234–238 (1991).

    Article 

    Google Scholar 

  • Moreau-Valancogne, P., Bertrand, M., Holmstrup, M. & Roger-Estrade, J. Integration of thermal time and hydrotime models to describe the development and growth of temperate earthworms. Soil Biol. Biochem. 63, 50–60. https://doi.org/10.1016/j.soilbio.2013.03.022 (2013).

    CAS 
    Article 

    Google Scholar 

  • Lubbers, I. M., van Groenigen, K. J., Brussaard, L. & van Groenigen, J. W. Reduced greenhouse gas mitigation potential of no-tillage soils through earthworm activity. Sci. Rep. 5, 13787 (2015).

    ADS 
    Article 

    Google Scholar 

  • Joschko, M. et al. Spatial analysis of earthworm biodiversity at the regional scale. Agric. Ecosyst. Environ. 112, 367–380 (2006).

    Article 

    Google Scholar 

  • Kanianska, R., Jad’ud’ova, J., Makovnikova, J. & Kizekova, M. Assessment of relationships between earthworms and soil abiotic and biotic factors as a tool in sustainable agricultural. Sustainability 8, 906 (2016).

    Article 

    Google Scholar 

  • Chertov, O. et al. Romul_Hum model of soil organic matter formation coupled with soil biota activity. III Parameterisation of earthworm activity. Ecol. Model. 345, 140–149 (2017).

    CAS 
    Article 

    Google Scholar 

  • Pelosi, C., Bertrand, M., Makowski, D. & Roger-Estrade, J. WORMDYN: A model of Lumbricus terrestris population dynamics in agricultural fields. Ecol. Model. 218, 219–234 (2008).

    Article 

    Google Scholar 

  • Fisk, M. C., Fahey, T. J., Groffman, P. M. & Bohlen, P. J. Earthworm invasion, fine-root distributions, and soil respiration in north temperate forests. Ecosystems 7, 55–62 (2004).

    Article 

    Google Scholar 

  • Rizhiya, E. et al. Earthworm activity as a determinant for N2O emission from crop residue. Soil Biol. Biochem. 39, 2058–2069 (2007).

    CAS 
    Article 

    Google Scholar 

  • Snyder, B. A., Boots, B. & Hendrix, P. F. Competition between invasive earthworms (Amynthas corticis, Megascolecidae) and native north American millipedes (Pseudopolydesmus erasus, Polydesmidae): Effects on carbon cycling and soil structure. Soil Biol. Biochem. 41, 1442–1449 (2009).

    CAS 
    Article 

    Google Scholar 

  • Chapuis-Lardy, L. et al. Effect of the endogeic earthworm Pontoscolex corethrurus on the microbial structure and activity related to CO2 and N2O fluxes from a tropical soil (Madagascar). Appl. Soil Ecol. 45, 201–208 (2010).

    Article 

    Google Scholar 

  • Bertora, C., van Vliet, P. C. J., Hummelink, E. W. J. & van Groenigen, J. W. Do earthworms increase N2O emissions in ploughed grassland?. Soil Biol. Biochem. 39, 632–640 (2007).

    CAS 
    Article 

    Google Scholar 

  • Binet, F., Fayolle, L. & Pussard, M. Significance of earthworms in stimulating soil microbial activity. Biol. Fertil. Soils 27, 79–84 (1998).

    Article 

    Google Scholar 

  • Butenschoen, O. et al. Endogeic earthworms alter carbon translocation by fungi at the soil–litter interface. Soil Biol. Biochem. 39, 2854–2864 (2007).

    CAS 
    Article 

    Google Scholar 

  • Cortez, J., Hameed, R. & Bouche, M. B. C-transfer and N-transfer in soil with or without earthworms fed with C-14 labelled and N-15 labelled wheat straw. Soil Biol. Biochem. 21, 491–497 (1989).

    Article 

    Google Scholar 

  • Marhan, S., Langel, R., Kandeler, E. & Scheu, S. Use of stable isotopes (13C) for studying the mobilisation of old soil organic carbon by endogeic earthworms (Lumbricidae). Eur. J. Soil Biol. 43, S201–S208 (2007).

    CAS 
    Article 

    Google Scholar 

  • Scheu, S. Effects of litter (beech and stinging nettle) and earthworms (Octolasion lacteum) on carbon and nutrient cycling in beech forests on a basalt-limestone gradient: A laboratory experiment. Biol. Fertil. Soils 24, 384–393 (1997).

    CAS 
    Article 

    Google Scholar 

  • Wolters, V. & Schaefer, M. Effects of burrowing by the earthworm Aporrectodea caliginosa (Savigny) on beech litter decomposition in an agricultural and in a forest soil. Geoderma 56, 627–632 (1993).

    ADS 
    Article 

    Google Scholar 


  • Source: Ecology - nature.com

    Solving a longstanding conundrum in heat transfer

    Thermal adaptation best explains Bergmann’s and Allen’s Rules across ecologically diverse shorebirds