in

Characterization and phylogeny of fungi isolated from industrial wastewater using multiple genes

[adace-ad id="91168"]
  • 1.

    Ramganesh, S., Timothy, S., Sudharshan, S. & Willem, A. J. N. Industrial effluents harbor a unique diversity of fungal community structures as revealed by high-throughput sequencing analysis. Pol. J. Environ. Stud. 28(4), 2353–2362. https://doi.org/10.15244/pjoes/90791 (2019).

    Article 

    Google Scholar 

  • 2.

    Hailemariam, A. A. et al. Diversity, co-occurrence and implications of fungal communities in wastewater treatment plants. Sci. Rep. 9, 14056. https://doi.org/10.1038/s41598-019-50624-z (2019).

    CAS 
    Article 

    Google Scholar 

  • 3.

    Maza-Márquez, P., Lee, M. D. & Bebout, B. M. The abundance and diversity of fungi in a hypersaline microbial mat from Guerrero Negro, Baja California, México. J. Fungi 7, 210. https://doi.org/10.3390/jof7030210 (2021).

    CAS 
    Article 

    Google Scholar 

  • 4.

    Ma, X., Baron, J. L., Vikram, A., Stout, J. E. & Bibby, K. Fungal diversity and presence of potentially pathogenic fungi in a hospital hot water system treated with on-site monochloramine. Water Res. 71, 197–206 (2015).

    CAS 
    Article 

    Google Scholar 

  • 5.

    Wei, Z. et al. The divergence between fungal and bacterial communities in seasonal and spatial variations of wastewater treatment plants. Sci. Total Environ. 628, 969–978 (2018).

    ADS 
    Article 

    Google Scholar 

  • 6.

    Ekowati, Y. et al. Clinically relevant fungi in water and on surfaces in an indoor swimming pool facility. Int. J. Hyg. Environ. Health. 220, 1152–1160 (2017).

    Article 

    Google Scholar 

  • 7.

    Manoharachary, C., Kunwar, I. K. & Reddy, S. V. Biodiversity, phylogeny and evolution of fungi. In Nature at Work: Ongoing Saga of Evolution (ed. Sharma, V. P.) (Springer, New Delhi, 2010). https://doi.org/10.1007/978-81-8489-992-4_10.

    Chapter 

    Google Scholar 

  • 8.

    Raja, H. A., Miller, A. N., Pearce, C. J. & Oberlies, N. H. Fungal identification using molecular tools: A primer for the natural products research community. J. Nat. Prod. 80, 756–770. https://doi.org/10.1021/acs.jnatprod.6b01085 (2017).

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 9.

    Liu, J., Li, J., Tao, Y., Sellamuthu, B. & Walsh, R. Analysis of bacterial, fungal and archaeal populations from a municipal wastewater treatment plant developing an innovative aerobic granular sludge process. World J. Microbiol. Biotechnol. 33, 14 (2017).

    Article 

    Google Scholar 

  • 10.

    Simeos, M. F. et al. Soil and rhizosphere associated fungi in gray Mangroves (Avicennia marina) from the Red Sea—A metagenomic approach. Genom. Proteom. Bioinform. 13, 310–320. https://doi.org/10.1016/j.gpb.2015.07.002 (2015).

    Article 

    Google Scholar 

  • 11.

    Helal, G. A., Mostafa, M. H. & El-Said, M. A. Fungi in the sewage-treatment Zeinein plant, Cairo, Egypt. J. Basic Appl. Mycol. 2(2011), 69–82 (2011).

    Google Scholar 

  • 12.

    Mishra, S. & Mishra, A. To study the diversity of fungal species in sewage water of Durg district. IOSR J. Environ. Sci. Toxicol. Food Technol. 1(6), 45–49 (2015).

    Google Scholar 

  • 13.

    Das, S., Dash, H. R., Mangwani, N., Chakraborty, J. & Kumari, S. Understanding molecular identification and polyphasic taxonomic approaches for genetic relatedness and phylogenetic relationships of microorganisms. J. Microbiol. Methods 103, 80–100. https://doi.org/10.1016/j.mimet.2014.05.013 (2014).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • 14.

    Yin, G., Zhang, Y., Pennerman, K. K., Wu, G. & Hua, S. S. T. Characterization of Blue Mold Penicillium Species isolated from stored fruits using multiple highly conserved loci. J. Fungi. 3, 1–10. https://doi.org/10.3390/jof3010012 (2017).

    CAS 
    Article 

    Google Scholar 

  • 15.

    Rajeshkumar, K. C., Yilmaz, N. & Marathe, S. D. Morphology and multigene phylogeny of Talaromyces amyrossmaniae, a new synnematous species belonging to the section Trachyspermi from India. Mycokeys 45, 41–56. https://doi.org/10.3897/mycokeys.45.32549 (2019).

    Article 

    Google Scholar 

  • 16.

    Adeniyi, M. et al. Molecular identification of some wild Nigerian mushrooms using internal transcribed spacer: Polymerase chain reaction. AMB Express 8, 1–9. https://doi.org/10.1186/s13568-018-0661-9 (2018).

    CAS 
    Article 

    Google Scholar 

  • 17.

    Houbraken, J. & Samson, R. A. Phylogeny of Penicillium and the segregation of Trichocomaceae into three families. Stud. Mycol. 70, 1–51. https://doi.org/10.3114/sim.2011.70.01 (2011).

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 18.

    Visagie, C. M. et al. Studies in mycology. Stud. Mycol. 78, 343–371. https://doi.org/10.1016/j.simyco.2014.09.001 (2014).

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 19.

    Asan, A., Kolanlarli, T. K., Sen, B. & Okten, S. Biodiversity of Penicillium species isolated from Edirne Söğütlük Forest soil (Turkey ). Nisan 10, 26–39 (2019).

    Google Scholar 

  • 20.

    De Carvalho, M. J. A. et al. Functional and genetic characterization of calmodulin from the dimorphic and pathogenic fungus Paracoccidioides brasiliensis. Fungal Genet. Biol. 39, 204–210. https://doi.org/10.1016/S1087-1845(03)00044-6 (2003).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • 21.

    De Cassia Garcia Simao, R. & Gomes, S. L. Structure, expression, and functional analysis of the gene coding for calmodulin in the chytridiomycete Blastocladiella emersonii. J. Bacteriol. 183, 2280–2288. https://doi.org/10.1128/JB.183.7.2280-2288.2001 (2001).

    Article 

    Google Scholar 

  • 22.

    Gerber, A., Ito, K., Chu, C. N. & Roeder, R. G. Induced RPB1 depletion reveals a direct gene-specific control of RNA Polymerase III function by RNA Polymerase II. Mol. Cell 78, 765–778. https://doi.org/10.1016/j.molcel.2020.03.023 (2020).

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 23.

    Malkus, A. et al. RNA polymerase II gene (RPB2) encoding the second largest protein subunit in Phaeosphaeria nodorum and P. avenaria. Mycol. Res. 110, 1152–1164 (2006).

    CAS 
    Article 

    Google Scholar 

  • 24.

    Vetrovsky, T., Kolarik, M., Zifcakova, L., Zelenka, T. & Baldrian, P. The rpb2 gene represents a viable alternative molecular marker for the analysis of environmental fungal communities. Mol. Ecol. Resour. 16, 388–401. https://doi.org/10.1111/1755-0998.12456 (2015).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • 25.

    Machido, D. A., Ezeonuegbu, B. A. & Yakubu, S. E. Resistance to some heavy metals among fungal flora of raw refinery effluent. J. Appl. Sci. Environ. Manag. 18, 623–627. https://doi.org/10.4314/jasem.v18i4.10 (2014).

    CAS 
    Article 

    Google Scholar 

  • 26.

    Ezeonuegbu, B. A., Machido, D. A. & Yakubu, S. E. Resistance of some heavy metals among fungal flora of raw refinery effluent. J. Appl. Sci. Environ. Manag. 18, 623–627 (2014).

    CAS 

    Google Scholar 

  • 27.

    Barnett, H. L. & Hunter, B. B. Illustrated Genera of Imperfect Fungi 4th edn. (Prentice Hall, 1999).

    Google Scholar 

  • 28.

    Hakeem, A. S. & Bhatnagar, B. Heavy metal reduction of pulp and paper mill effluent by indigenous microbes. Asian J. Exp. Biol. Sci. 1, 203–210 (2010).

    Google Scholar 

  • 29.

    Viegas, C., Sabino, R., Botelho, D., Santos, M. & Gomes, A. Q. Assessment of exposure to Penicillium glabrum complex in cork industry using complementing methods. Arch. Ind. Hyg. Toxicol. 66, 203–207. https://doi.org/10.1515/aiht-2015-66-2614 (2015).

    Article 

    Google Scholar 

  • 30.

    Khandavilli, R., Meena, R. & Bd, S. Fungal phylogenetic diversity in estuarine sediments of Gautami. Curr. Res. Environ. Appl. Mycol. 6, 268–276. https://doi.org/10.5943/cream/6/4/4 (2016).

    Article 

    Google Scholar 

  • 31.

    Houbraken, J., Frisvad, J. C. & Samson, R. A. Sex in penicillium series roqueforti. IMA Fungus 1, 171–180 (2010).

    Article 

    Google Scholar 

  • 32.

    Goujon, M. et al. A new bioinformatics analysis tools framework at EMBL_EBI. Nucleic Acids Res. 38, W695–W699 (2010).

    CAS 
    Article 

    Google Scholar 

  • 33.

    Kumar, S., Stecher, G. & Tamura, K. MEGA 7: Molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol. Biol. Evol. 33, 1870 (2015).

    Article 

    Google Scholar 

  • 34.

    Sidiq, F., Hoostal, M. & Rogers, S. O. Rapid identification of fungi in culture – negative clinical blood and respiratory samples by DNA sequence analyses. BMC. Res. Notes 9, 1–8. https://doi.org/10.1186/s13104-016-2097-0 (2016).

    CAS 
    Article 

    Google Scholar 

  • 35.

    Oyebanji, E. O., Adekunle, A. A., Coker, H. A. B. & Adebami, G. E. Mycotic loads’ determination of non-sterile pharmaceuticals in lagos state and 16s rdna identification of the fungal isolates. J. Appl. Pharm. Res. 6, 16–28. https://doi.org/10.18231/2348-0335.2018.0007 (2018).

    CAS 
    Article 

    Google Scholar 

  • 36.

    Tiwari, P., Kumar, B., Kaur, G. & Kaur, H. Phytochemical screening and extraction: A review. Int. Pharm. Sci. 1, 98–106 (2011).

    Google Scholar 

  • 37.

    Ozdil, S., Asan, A., Sen, B. & Okten, S. Biodiversity of Airborne Fungi in the Indoor Environment of Refrigerators Used in Houses. J. Fungus. 8, 109–124. https://doi.org/10.15318/fungus.2017.41 (2017).

    Article 

    Google Scholar 

  • 38.

    Ashtiani, N. M., Kachuei, R., Yalfani, R. & Harchegani, A. B. Identification of Aspergillus sections Flavi, Nigri, and Fumigati and their differentiation using specific primers. Infez. Med. 2, 127–132 (2017).

    Google Scholar 

  • 39.

    Eulalia, M. M., Agnieszka, F. & Zalewska, E. D. Aspergillus penicillioides Speg. Implicated in Keratomycosis. Pol. J. Microbiol. 67, 407–416 (2018).

    Article 

    Google Scholar 

  • 40.

    Kamarudin, N. A. & Zakaria, L. Characterization of two xerophilic Aspergillus spp. from peanuts (Arachis hypogaea) Nur. Malays. J. Microbiol. 14, 41–48 (2018).

    CAS 

    Google Scholar 

  • 41.

    Samson, R. A. et al. Phylogeny, identification and nomenclature of the genus Aspergillus. Stud. Mycol. 78, 141–173. https://doi.org/10.1016/j.simyco.2014.07.004 (2014).

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 42.

    Wolski, E. A., Barrera, V., Castellari, C. & Gonzalez, J. F. Biodegradation of phenol in static cultures by Penicillium chrysogenum EK1: catalytic abilities and residual photo toxicity. Rev. Argent. Microbiol. 44, 113–121 (2012).

    CAS 
    PubMed 

    Google Scholar 


  • Source: Ecology - nature.com

    3 Questions: What a single car can say about traffic

    The fabrication and assessment of mosquito repellent cream for outdoor protection