Soil sampling and determination of soil physical properties and synoptic data
Soil samples were taken from two coastal deserts in the north and south of Iran. Details of their geographic distribution and eco-physiological characterization were shown in Table 1. A total of 2 kg of soil samples were collected from 2 distinct sampling locations ranging in depth from 0 to 30 cm, and the samples were dried for 3 days at room temperature and in the dark before sifting. The soil samples were sieved using a 2 mm sieve to remove stones and other inert material before being stored in zip-top bags. Table 1 lists the soil samples’ physical characteristics, including soil texture (sand 2–0.02 mm; silt 0.02–0.002 mm; clay 0.002 mm), pH, and the proportions of clay, silt, and sand. Synoptic data from the past 10 years (2009–2019), including the average annual temperature, maximum temperature, minimum temperature, average rainfall, average annual wind speed, and maximum wind speed, were obtained from the I.R.OF Iran Meteor (http://www.irimo.ir/far/index.php).
Bacterial isolation and effect of manure-based medium on their growth
According to Chen et al. 2005, the soil-borne bacteria were isolated using direct-spreading method. For this essence soil samples were treated through a series of dilutions. The mixture of 1 g of soil sample was vortexed for 1 min after being suspended in 2 ml of sterile physiological saline (0.9% w/v NaCl). The mixture was then diluted serially (typically 10–1 to 10–7), and level 100 μl of the diluted soil samples were scattered on the surface of solidified plates using glass spreaders. The samples were then incubated for 1 to 3 days at 30 °C in an inverted posture without light. For bacterial isolation, we used eleven culture media including Nutrient Agar (NA), Nutrient Agar plus MnSO4 (NA + MnSO4), LB, Moller Hinton Agar (MHA), Acidithiobacillus (APH) medium, Violet Red Bile Lactose (VRB) agar medium, GYM Streptomyces medium, DPM medium, Azospirillum medium, Azotobacter medium and Manure based medium (MB).
To prepare MB medium, dry animal manure and distilled water (1:6 w/v) were combined to create MB medium, which was then let to sit at room temperature for 16 h. The resulting mixture was then centrifuged at 5000 rcf for 30 min after being filtered twice. The next stage involved adding Hoagland salts (10% w/v) to the final extract, adjusting the medium’s pH to 5.8 ± 0.02, and autoclaving it for 20 min at 121 °C and 1.5 kPa. Before sterilization, bacteriological agar (1.5 w/v) was employed as a gelling agent to solidify the medium.
After bacterial isolation on NA, NA+ MnSO4, LB, MHA, APH, VRB, GYM, DPM, and Azospibrillum media, the growth of all isolates was evaluated on an MB medium. To investigate isolates biomass in the same condition, we elected MB medium. First, the bacteria were grown in the liquid form of NA, NA+ MnSO4, LB, MHA, APH, VRB, GYM, DPM, and Azospirillum and Azotobacter media at 30 °C for 48 h, then 103 cells of each isolate were transferred to 48 wells plates containing MB medium, and plates were incubated at 30 °C for 10 h. Then, the growth of bacteria was read at an optical density (OD) of 630 nm 10 h after inoculation, the experiment was performed with three replicates. In the following step, CFU/ml equivalent to each OD was obtained by inoculating the uniform amount of liquid culture of the isolates on the solid form of MB medium at 30 °C for 16 h.
Phenotypic characterization and biochemical identification of bacterial isolates
The morphological analysis of the cell shape, colony (i.e., shape, color, and size), and biochemical tests were used to identify the bacterial isolates. Biochemical characterization was carried out By using gram staining, KOH27, oxidase, and catalase tests. For this essence, following Bartholomew’s method28, gram staining of bacteria was studied 48 h after inoculation on MHA, and the non-staining KOH method was used to confirm the results. Using 0.5 ml of a 10% hydrogen peroxide solution, a catalase test was conducted, and the generation of gas bubbles was monitored. Using biochemical oxidase discs, the oxidative activity of 27 isolates was investigated.
Effect of abiotic stresses on bacterial isolates
To determine the effect of abiotic stresses on isolates alkaline (MH medium with pH 10), salinity (MH medium supplemented with the final concentration of 100 mM NaCl), osmotic [MH medium supplemented with 25% polyethylene glycol (PEG) Mn6000], and thermal stresses (MH medium incubated at 15 °C for cold stress and 60 °C for heat stress) were screened. For all experiments, the incubation period was 15 h, and plates were kept in a dark condition.
MALDI-TOF MS identification of isolates
Soil bacterial isolates were subcultured twice on MHA and incubated at 30 °C for 24 h before MALDI-TOF MS measurement. Then ∼0.1 µg of cell material was directly transferred from a bacterial colony or smear of colonies to a MALDI target spot. After drying at laboratory temperature, sample spots were overlaid with 1 μl of matrix solution (10 mg/mL a-cyano-4-hydroxycinnamic acid in 50% acetonitrile and 2.5% trifluoroacetic acid) and each measurement was carried out in triplicate (technical replicates). MS analysis was performed on an Autoflex MALDI-TOF mass spectrometer (Bruker Daltonics, Germany) using Flex Control 3.4 software (Bruker Daltonics, Germany). Calibration was carried out with the use of the Bacterial Test Standard (Bruker Daltonics, Germany). Soil isolates with a valid MALDI-TOF MS score of 2 were undoubtedly assigned to the genus/species level. For bacterial classification and identification, BioTyper 3.1 software (Bruker Daltonics, Germany) equipped with MBT 6903 MPS Library (released in April 2016), the MALDI Biotyper Preprocessing Standard Method, and the MALDI Biotyper MSP Identification Standard Method adjusted by the manufacturer (Bruker Daltonics, Germany) were used. Only the highest score value of all mass spectra belonging to individual cultures (biological and technical replicates) was recorded25. The score between 2.3 and 3.00 shows highly probable species-level identification and between 2.0 and 2.29 represents genus-level identification and probable species level of identification. A score between 1.7 and 1.99 indicates probable genus-level identification29.
Effects of bacterial isolates on plants growth
The Seed and Plant Improvement Institute of Karaj (Karaj, Iran; http://www.spii.ir/homepage.aspx?site=DouranPortal&tabid=1&lang=faIR) provided the maize, canola, and wheat seeds (Zea mays. Var Kosha; Brassica napus Var Nima; Triticum aestivum Var Kalate). In greenhouse trials, 2 × 103 cells/seed of soil-borne isolates cultured in a manure-based medium were inoculated to maize, canola, and wheat plants. During the studies, sand that had been acid washed and autoclaved was used for planting. For three weeks, seedlings were kept under a 16/8 h day/night photoperiod with a 25 °C temperature. Three replications of a complete randomized block design were used for the colonization experiment’s treatments. Under the bacterial treatments, measurements were made of the plant growth parameters including shoot dry biomass (mg), root dry biomass (mg), shoot length (cm), root length (cm), shoot density (mg/cm), root density (mg/cm), and shoot/root weight (mg). Samples were dried at 60 °C for three days to measure dry biomass.
Statistical analysis
Statistical analysis was done by R software (version 4.1.3). One-way analysis of variance (ANOVA) was used to determine the significance of the experiment, and Fisher’s protected Least Significant Difference (LSD) test with a P-value of 0.01 was performed to separate the means. Furthermore, PCA analysis has been carried out based on the Clustvis package and the SVD imputation approach.
Ethics approval and consent to participate
All authors agree to the ethics and consent to participate in this article and declare that this submission follows the policies of Scientific Reports. Accordingly, the material is the author’s original work, which has not been previously published elsewhere. The paper is not being considered for publication elsewhere. All authors have been personally and actively involved in substantial work leading to the paper and will take public responsibility for its content.
Ethics for research involving plants
All authors confirmed that experimental research and field studies on plants, including receiving the seeds from the Seed and Plant Improvement Institute of Karaj, complied with relevant institutional, national, and international guidelines and legislation. Furthermore, methods were conducted according to the relevant guidelines and regulations.
Source: Ecology - nature.com