in

Chromosome-level genome assembly of Bactrocera dorsalis reveals its adaptation and invasion mechanisms

  • 1.

    Qin, Y.-j. et al. Population structure of a global agricultural invasive pest, Bactrocera dorsalis (Diptera: Tephritidae). Evol. Appl. 11, 1990–2003 (2018).

    PubMed 
    PubMed Central 

    Google Scholar 

  • 2.

    Christenson, L. D. & Foote, R. H. Biology of fruit flies. Annu. Rev. Entomol. 5, 171–192 (1960).

    Google Scholar 

  • 3.

    Clarke, A. R. et al. Invasive phytophagous pests arising through a recent tropical evolutionary radiation: the Bactrocera dorsalis complex of fruit flies. Annu. Rev. Entomol. 50, 293–319 (2005).

    CAS 
    PubMed 

    Google Scholar 

  • 4.

    Culliney, T. W. The aliens have landed: invasive species threaten Hawaii agriculture. Agric. Hawaii 3, 6–9 (2002).

    Google Scholar 

  • 5.

    Cantrell, B., Chadwick, B. & Cahill, A. Fruit Fly Fighters: Eradication of the Papaya Fruit Fly (CSIRO, Collingwood, 2002).

  • 6.

    Ekesi, S., De Meyer, M., Mohamed, S. A., Virgilio, M. & Borgemeister, C. Taxonomy, ecology, and management of native and exotic fruit fly species in Africa. Annu. Rev. Entomol. 61, 219–238 (2016).

    CAS 
    PubMed 

    Google Scholar 

  • 7.

    Duyck, P. F., David, P. & Quilici, S. A review of relationships between interspecific competition and invasions in fruit flies (Diptera: Tephritidae). Ecol. Entomol. 29, 511–520 (2004).

    Google Scholar 

  • 8.

    Liu, H., Zhang, C., Hou, B. H., Ou-Yang, G. C. & Ma, J. Interspecific competition between Ceratitis capitata and two Bactrocera spp. (Diptera: Tephritidae) evaluated via adult behavioral interference under laboratory conditions. J. Econ. Entomol. 110, 1145–1155 (2017).

    PubMed 

    Google Scholar 

  • 9.

    Li, F. et al. Insect genomes: progress and challenges. Insect Mol. Biol. 28, 739–758 (2019).

    CAS 
    PubMed 

    Google Scholar 

  • 10.

    Schutze, M. K. et al. Synonymization of key pest species within the Bactrocera dorsalis complex (Diptera: Tephritidae): taxonomic changes based on a review of 20 years of integrative morphological, molecular, cytogenetic, behavioural, and chemoecological data. Syst. Entomol. 40, 456–471 (2015).

    Google Scholar 

  • 11.

    Dudchenko, O. et al. De novo assembly of the Aedes aegypti genome using Hi-C yields chromosome-length scaffolds. Science 356, 92–95 (2017).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 12.

    Wu, N. et al. Fall webworm genomes yield insights into rapid adaptation of invasive species. Nat. Ecol. Evol. 3, 105–115 (2019).

    PubMed 

    Google Scholar 

  • 13.

    Papanicolaou, A. et al. The whole genome sequence of the Mediterranean fruit fly, Ceratitis capitata (Wiedemann), reveals insights into the biology and adaptive evolution of a highly invasive pest species. Genome Biol. 17, 192 (2016).

    PubMed 
    PubMed Central 

    Google Scholar 

  • 14.

    Sim, S. B. & Geib, S. M. A chromosome-scale assembly of the Bactrocera cucurbitae genome provides insight to the genetic basis of white pupae. G3 (Bethesda) 7, 1927–1940 (2017).

    CAS 

    Google Scholar 

  • 15.

    Parra, G., Bradnam, K. & Korf, I. CEGMA: a pipeline to accurately annotate core genes in eukaryotic genomes. Bioinformatics 23, 1061–1067 (2007).

    CAS 
    PubMed 

    Google Scholar 

  • 16.

    Simão, F. A., Waterhouse, R. M., Ioannidis, P., Kriventseva, E. V. & Zdobnov, E. M. BUSCO: assessing genome assembly and annotation completeness with single-copy orthologs. Bioinformatics 31, 3210–3212 (2015).

    Google Scholar 

  • 17.

    Ashburner, M. et al. Gene ontology: tool for the unification of biology. The Gene Ontology Consortium. Nat. Genet. 25, 25–29 (2000).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 18.

    Kanehisa, M., Goto, S., Sato, Y., Furumichi, M. & Tanabe, M. KEGG for integration and interpretation of large-scale molecular data sets. Nucleic Acids Res. 40, 109–114 (2012).

    Google Scholar 

  • 19.

    Ting, C. T. et al. Gene duplication and speciation in Drosophila: evidence from the Odysseus locus. Proc. Natl Acad. Sci. USA 101, 12232–12235 (2004).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 20.

    Yuan, Y. W. & Wessler, S. R. The catalytic domain of all eukaryotic cut-and-paste transposase superfamilies. Proc. Natl Acad. Sci. USA 108, 7884–7889 (2011).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 21.

    Rappoport, N. & Linial, M. Trends in genome dynamics among major orders of insects revealed through variations in protein families. BMC Genomics 16, 583 (2015).

    PubMed 
    PubMed Central 

    Google Scholar 

  • 22.

    Sackton, T. B. et al. Dynamic evolution of the innate immune system in Drosophila. Nat. Genet. 39, 1461–1468 (2007).

    CAS 
    PubMed 

    Google Scholar 

  • 23.

    Stephen, B. H. & David, L. H. Key evolutionary innovations and their ecological mechanisms. Hist. Biol. 10, 151–173 (1995).

    Google Scholar 

  • 24.

    Yu, G. C., Wang, L. G., Han, Y. Y. & He, Q. Y. clusterProfiler: an R package for comparing biological themes among gene clusters. OMICS 16, 284–287 (2012).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 25.

    Lindquist, S. The heat-shock response. Annu. Rev. Biochem. 55, 1151–1191 (1986).

    CAS 
    PubMed 

    Google Scholar 

  • 26.

    Parsell, D. A. & Lindquist, S. The function of heat-shock proteins in stress tolerance-degradation and reactivation of damaged proteins. Annu. Rev. Genet. 27, 437–496 (1993).

    CAS 
    PubMed 

    Google Scholar 

  • 27.

    Feder, M. E. & Hofmann, G. E. Heat-shock proteins, molecular chaperones, and the stress response. Annu. Rev. Physiol. 61, 243–282 (1999).

    CAS 
    PubMed 

    Google Scholar 

  • 28.

    Iwama, G. K., Thomas, P. T., Forsyth, R. H. B. & Vijayan, M. M. Heat shock protein expression in fish. Rev. Fish. Biol. Fish. 8, 35–56 (1998).

    Google Scholar 

  • 29.

    Azad, P., Ryu, J. & Haddad, G. G. Distinct role of Hsp70 in Drosophila hemocytes during severe hypoxia. Free Radic. Biol. Med. 51, 530–538 (2011).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 30.

    Zhao, P. et al. Genome-wide analysis of the potato hsp20 gene family: identification, genomic organization and expression profiles in response to heat stress. BMC Genomics 19, 61 (2018).

    PubMed 
    PubMed Central 

    Google Scholar 

  • 31.

    Weinstein, D. J. et al. The genome of a subterrestrial nematode reveals adaptations to heat. Nat. Commun. 10, 5268 (2019).

    PubMed 
    PubMed Central 

    Google Scholar 

  • 32.

    Gu, X. et al. A transcriptional and functional analysis of heat hardening in two invasive fruit fly species, Bactrocera dorsalis, and Bactrocera correcta. Evol. Appl. 12, 1147–1163 (2019).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 33.

    Sorensen, J. G., Dahlgaard, J. & Loeschcke, V. Genetic variation in thermal tolerance among natural populations of drosophila buzzatii: down regulation of hsp70 expression and variation in heat stress resistance traits. Funct. Ecol. 15, 289–296 (2001).

    Google Scholar 

  • 34.

    Terblanche, J. S. et al. Ecologically relevant measures of tolerance to potentially lethal temperatures. J. Exp. Biol. 214, 3713–3725 (2011).

    PubMed 

    Google Scholar 

  • 35.

    Raza, M. F. et al. Gut microbiota promotes host resistance to low-temperature stress by stimulating its arginine and proline metabolism pathway in adult Bactrocera dorsalis. PLoS Pathog. 16, e1008441 (2020).

    PubMed 
    PubMed Central 

    Google Scholar 

  • 36.

    Trempolec, N., Dave-Coll, N. & Nebreda, A. R. Snapshot: p38 MAPK signaling. Cell 152, 656–656.e1 (2013).

    CAS 
    PubMed 

    Google Scholar 

  • 37.

    Tatar, M. et al. A mutant Drosophila insulin receptor homolog that extends life-span and impairs neuroendocrine function. Science 292, 107–110 (2001).

    CAS 
    PubMed 

    Google Scholar 

  • 38.

    Vrailas-Mortimer, A. et al. A muscle-specific p38 MAPK/Mef2/MnSOD pathway regulates stress, motor function, and life span in Drosophila. Dev. Cell 21, 783–795 (2011).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 39.

    Li, F. F., Xia, J., Li, J. M., Liu, J. M. & Wang, X. W. P38 MAPK is a component of the signal transduction pathway triggering cold stress response in the med cryptic species of Bemisia tabaci. J. Integr. Agr. 11, 303–311 (2012).

    CAS 

    Google Scholar 

  • 40.

    Xiao, X. P. et al. A Mesh-Duox pathway regulates homeostasis in the insect gut. Nat. Microbiol. 2, 17020 (2017).

    PubMed 
    PubMed Central 

    Google Scholar 

  • 41.

    Wan, F. et al. A chromosome-level genome assembly of Cydia pomonella provides insights into chemical ecology and insecticide resistance. Nat. Commun. 10, 4237–4237 (2019).

    PubMed 
    PubMed Central 

    Google Scholar 

  • 42.

    Drew, R. & Yuval, B. Fruit Flies (Tephritidae): Phylogeny and Evolution of Behavior (eds Aluja, M. & Norrbom, A.) 731−749 (CRC Press, 2000).

  • 43.

    Dahanukar, A., Hallem, E. A. & Carlson, J. R. Insect chemoreception. Curr. Opin. Neurobiol. 15, 423–430 (2005).

    CAS 
    PubMed 

    Google Scholar 

  • 44.

    Bargmann, C. I. Comparative chemosensation from receptors to ecology. Nature 444, 295 (2006).

    CAS 
    PubMed 

    Google Scholar 

  • 45.

    Benton, R. Multigene family evolution: perspectives from insect chemoreceptors. Trends Ecol. Evol. 30, 590–600 (2015).

    PubMed 

    Google Scholar 

  • 46.

    Miyazaki, H. et al. Functional characterization of olfactory receptors in the Oriental fruit fly Bactrocera dorsalis that respond to plant volatiles. Insect Biochem. Mol. Biol. 101, 32–46 (2018).

    CAS 
    PubMed 

    Google Scholar 

  • 47.

    Ono, H. et al. Functional characterization of olfactory receptors in three Dacini fruit flies (Diptera: Tephritidae) that respond to 1-nonanol analogs as components in the rectal glands. Comp. Biochem. Physiol. B: Biochem. Mol. Biol. 239, 110346 (2020).

    Google Scholar 

  • 48.

    Harris, R. M. & Hofmann, H. A. Seeing is believing: dynamic evolution of gene families. Proc. Natl Acad. Sci. USA 112, 1252–1253 (2015).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 49.

    Nei, M., Niimura, Y. & Nozawa, M. The evolution of animal chemosensory receptor gene repertoires: roles of chance and necessity. Nat. Rev. Genet. 9, 951−963 (2008).

  • 50.

    Arguello, J. R. et al. Extensive local adaptation within the chemosensory system following Drosophila melanogaster’s global expansion. Nat. Commun. 7, 11855 (2016).

    Google Scholar 

  • 51.

    Li, S. et al. The genomic and functional landscapes of developmental plasticity in the American cockroach. Nat. Commun. 9, 1008 (2018).

    PubMed 
    PubMed Central 

    Google Scholar 

  • 52.

    Vontas, J. et al. Insecticide resistance in Tephritid flies. Pestic. Biochem. Physiol. 100, 199–205 (2011).

    CAS 

    Google Scholar 

  • 53.

    Bergé, J. B., Feyereisen, R. & Amichot, M. Cytochrome P450 monooxygenases and insecticide resistance in insects. Philos. Trans. R. Soc. Lond. B: Biol. Sci. 353, 1701–1705 (1998).

    Google Scholar 

  • 54.

    Scott, J. G. Cytochromes P450 and insecticide resistance. Insect Biochem. Mol. Biol. 29, 757–777 (1999).

    CAS 
    PubMed 

    Google Scholar 

  • 55.

    Rane, R. V. et al. Detoxifying enzyme complements and host use phenotypes in 160 insect species. Curr. Opin. Insect Sci. 31, 131–138 (2019).

    PubMed 

    Google Scholar 

  • 56.

    Pendleton, M. et al. Assembly and diploid architecture of an individual human genome via single-molecule technologies. Nat. Methods 12, 780–786 (2015).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 57.

    Belton, J. M. et al. Hi-C: a comprehensive technique to capture the conformation of genomes. Methods 58, 268–276 (2012).

    CAS 
    PubMed 

    Google Scholar 

  • 58.

    Burton, J. N., Liachko, I., Dunham, M. J. & Shendure, J. Species-level deconvolution of metagenome assemblies with Hi-C-based contact probability maps. G3-Genes Genom. Genet. 4, 1339–1346 (2014).

    Google Scholar 

  • 59.

    Burton, J. N. et al. Chromosome-scale scaffolding of de novo genome assemblies based on chromatin interactions. Nat. Biotechnol. 31, 1119–1125 (2013).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 60.

    Servant, N. et al. HiC-Pro: an optimized and flexible pipeline for Hi-C data processing. Genome Biol. 16, 1–11 (2015).

    Google Scholar 

  • 61.

    Koren, S. et al. Canu: scalable and accurate long-read assembly via adaptive k-mer weighting and repeat separation. Genome Res. 27, 722–736 (2017).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 62.

    Walker, B. J. et al. Pilon: an integrated tool for comprehensive microbial variant detection and genome assembly improvement. PLoS One 9, e112963 (2014).

    PubMed 
    PubMed Central 

    Google Scholar 

  • 63.

    Chakraborty, M., Baldwin-Brown, J. G., Long, A. D. & Emerson, J. J. Contiguous and accurate de novo assembly of metazoan genomes with modest long read coverage. Nucleic Acids Res. 44, e147 (2016).

    PubMed 
    PubMed Central 

    Google Scholar 

  • 64.

    Chin, C. S. et al. Phased diploid genome assembly with single-molecule real-time sequencing. Nat. Methods 13, 1050–1054 (2016).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 65.

    Xiao, C. L. et al. MECAT: fast mapping, error correction, and de novo assembly for single-molecule sequencing reads. Nat. Methods 14, 1072–1074 (2017).

    CAS 
    PubMed 

    Google Scholar 

  • 66.

    Li, H. & Durbin, R. Fast and accurate short read alignment with Burrows−Wheeler transform. Bioinformatics 25, 1754–1760 (2009).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 67.

    Worley, K. C. et al. Improving genomes using long reads and PBJelly 2. In International Plant & Animal Genome Conference XXI (2014).

  • 68.

    Krzywinski, M. et al. Circos: An information aesthetic for comparative genomics. Genome Res. 19, 1639–1645 (2009).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 69.

    Burge, C. & Karlin, S. Prediction of complete gene structures in human genomic DNA. J. Mol. Biol. 268, 78–94 (1997).

    CAS 
    PubMed 

    Google Scholar 

  • 70.

    Stanke, M. & Waack, S. Gene prediction with a hidden Markov model and a new intron submodel. Bioinformatics 19, ii215–ii225 (2003).

    PubMed 

    Google Scholar 

  • 71.

    Korf, I. Gene finding in novel genomes. BMC Bioinform. 5, 59 (2004).

    Google Scholar 

  • 72.

    Majoros, W. H., Pertea, M. & Salzberg, S. L. TigrScan and GlimmerHMM: two open source ab initio eukaryotic gene-finders. Bioinformatics 20, 2878–2879 (2004).

    CAS 
    PubMed 

    Google Scholar 

  • 73.

    Blanco, E., Parra, G. & Guigó, R. Using geneid to identify genes. Curr. Protoc. Bioinform. 18, 4.3.1–4.3.28 (2007).

    Google Scholar 

  • 74.

    Keilwagen, J. et al. Using intron position conservation for homology-based gene prediction. Nucleic Acids Res. 44, e89–e89 (2016).

    PubMed 
    PubMed Central 

    Google Scholar 

  • 75.

    Campbell, M. A., Haas, B. J., Hamilton, J. P., Mount, S. M. & Buell, C. R. Comprehensive analysis of alternative splicing in rice and comparative analyses with Arabidopsis. BMC Genomics 7, 327 (2006).

    PubMed 
    PubMed Central 

    Google Scholar 

  • 76.

    Haas, B. J. et al. Automated eukaryotic gene structure annotation using EVidenceModeler and the Program to Assemble Spliced Alignments. Genome Biol. 9, R7 (2008).

    PubMed 
    PubMed Central 

    Google Scholar 

  • 77.

    Lowe, T. M. & Eddy, S. R. tRNAscan-SE: a program for improved detection of transfer RNA genes in genomic sequence. Nucleic Acids Res. 25, 955–964 (1997).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 78.

    Griffiths-Jones, S. et al. Rfam: annotating non-coding RNAs in complete genomes. Nucleic Acids Res. 33, D121–D124 (2005).

    CAS 
    PubMed 

    Google Scholar 

  • 79.

    Griffiths-Jones, S., Grocock, R. J., Van Dongen, S., Bateman, A. & Enright, A. J. miRBase: microRNA sequences, targets, and gene nomenclature. Nucleic Acids Res. 34, D140–D144 (2006).

    CAS 
    PubMed 

    Google Scholar 

  • 80.

    Nawrocki, E. P. & Eddy, S. R. Infernal 1.1: 100-fold faster RNA homology searches. Bioinformatics 29, 2933–2935 (2013).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 81.

    Edgar, R. C. & Myers, E. W. PILER: Identification and classification of genomic repeats. Bioinformatics 21, i152–i158 (2005).

    CAS 
    PubMed 

    Google Scholar 

  • 82.

    Price, A. L., Jones, N. C. & Pevzner, P. A. De novo identification of repeat families in large genomes. Bioinformatics 21, i351–i358 (2005).

    CAS 
    PubMed 

    Google Scholar 

  • 83.

    Xu, Z. & Wang, H. LTR_FINDER: an efficient tool for the prediction of full-length LTR retrotransposons. Nucleic Acids Res. 35, W265–W268 (2007).

    PubMed 
    PubMed Central 

    Google Scholar 

  • 84.

    Han, Y. & Wessler, S. R. MITE-Hunter: a program for discovering miniature inverted-repeat transposable elements from genomic sequences. Nucleic Acids Res. 38, e199 (2010).

    PubMed 
    PubMed Central 

    Google Scholar 

  • 85.

    Jurka, J. et al. Repbase Update, a database of eukaryotic repetitive elements. Cytogenet Genome Res. 110, 462–467 (2005).

    CAS 
    PubMed 

    Google Scholar 

  • 86.

    Wicker, T. et al. A unified classification system for eukaryotic transposable elements. Nat. Rev. Genet. 8, 973–982 (2007).

    CAS 
    PubMed 

    Google Scholar 

  • 87.

    Tarailo-Graovac, M. & Chen, N. S. Using RepeatMasker to identify repetitive elements in genomic sequences. Curr. Protoc. Bioinform. 25, 4.10.1–4.10.14 (2009).

    Google Scholar 

  • 88.

    Wang, Y. et al. MCScanX: a toolkit for detection and evolutionary analysis of gene synteny and collinearity. Nucleic Acids Res. 40, e49 (2012).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 89.

    Birney, E., Clamp, M. & Durbin, R. GeneWise and Genomewise. Genome Res. 14, 988–995 (2004).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 90.

    She, R., Chu, J. S. C., Wang, K., Pei, J. & Chen, N. S. GenBlastA: enabling BLAST to identify homologous gene sequences. Genome Res. 19, 143–149 (2009).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 91.

    Altschul, S. F., Gish, W., Miller, W., Myers, E. W. & Lipman, D. J. Basic local alignment search tool. J. Mol. Biol. 215, 403–410 (1990).

    CAS 
    PubMed 

    Google Scholar 

  • 92.

    Kanehisa, M. & Goto, S. KEGG: Kyoto encyclopedia of genes and genomes. Nucleic Acids Res. 28, 27–30 (2000).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 93.

    Tatusov, R. L. et al. The COG database: new developments in phylogenetic classification of proteins from complete genomes. Nucleic Acids Res. 29, 22–28 (2001).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 94.

    Boeckmann, B. et al. The SWISS-PROT protein KnowledgeBase and its supplement TrEMBL in 2003. Nucleic Acids Res. 31, 365–370 (2003).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 95.

    Marchler-Bauer, A. et al. CDD: a Conserved Domain Database for the functional annotation of proteins. Nucleic Acids Res. 39, D225–D229 (2011).

    CAS 
    PubMed 

    Google Scholar 

  • 96.

    Conesa, A. et al. Blast2GO: a universal tool for annotation, visualization, and analysis in functional genomics research. Bioinformatics 21, 3674–3676 (2005).

    CAS 

    Google Scholar 

  • 97.

    Dimmer, E. C. et al. The UniProt-GO annotation database in 2011. Nucleic Acids Res. 40, D565–D570 (2012).

    CAS 
    PubMed 

    Google Scholar 

  • 98.

    Bairoch, A. PROSITE-a dictionary of sites and patterns in proteins. Nucleic Acids Res. 19, 2241–2245 (1991).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 99.

    Attwood, T. K. & Beck, M. E. Prints-a protein motif fingerprint database. Protein Eng. Des. Sel. 7, 841–848 (1994).

    CAS 

    Google Scholar 

  • 100.

    Zdobnov, E. M. & Apweiler, R. InterProScan-an integration platform for the signature-recognition methods in InterPro. Bioinformatics 17, 847–848 (2001).

    CAS 
    PubMed 

    Google Scholar 

  • 101.

    Gough, J. & Chothia, C. SUPERFAMILY: HMMs representing all proteins of known structure. SCOP sequence searches, alignments, and genome assignments. Nucleic Acids Res. 30, 268–272 (2002).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 102.

    Haft, D. H., Selengut, J. D. & White, O. The TIGRFAMs database of protein families. Nucleic Acids Res. 31, 371–373 (2003).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 103.

    Thomas, P. D. et al. PANTHER: a browsable database of gene products organized by biological function, using curated protein family and subfamily classification. Nucleic Acids Res. 31, 334–341 (2003).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 104.

    Letunic, I. et al. SMART 4.0: towards genomic data integration. Nucleic Acids Res. 32, D142–D144 (2004).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 105.

    Wu, C. H. et al. PIRSF: family classification system at the Protein Information Resource. Nucleic Acids Res. 32, D112–D114 (2004).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 106.

    Bru, C. et al. The ProDom database of protein domain families: more emphasis on 3D. Nucleic Acids Res. 33, D212–D215 (2005).

    CAS 
    PubMed 

    Google Scholar 

  • 107.

    Finn, R. D. et al. Pfam: clans, web tools, and services. Nucleic Acids Res. 34, D247–D251 (2006).

    CAS 
    PubMed 

    Google Scholar 

  • 108.

    Lima, T. et al. HAMAP: a database of completely sequenced microbial proteome sets and manually curated microbial protein families in UniProtKB/Swiss-Prot. Nucleic Acids Res. 37, D471–D478 (2009).

    CAS 
    PubMed 

    Google Scholar 

  • 109.

    Lees, J. et al. Gene3D: a domain-based resource for comparative genomics, functional annotation, and protein network analysis. Nucleic Acids Res. 40, D465–D471 (2012).

    CAS 
    PubMed 

    Google Scholar 

  • 110.

    Emms, D. M. & Kelly, S. OrthoFinder: phylogenetic orthology inference for comparative genomics. Genome Biol. 20, 238 (2019).

    PubMed 
    PubMed Central 

    Google Scholar 

  • 111.

    Mi, H. Y., Muruganujan, A., Ebert, D., Huang, X. S. & Thomas, P. D. PANTHER version 14: more genomes, a new PANTHER GO-slim, and improvements in enrichment analysis tools. Nucleic Acids Res. 47, D419–D426 (2019).

    CAS 

    Google Scholar 

  • 112.

    Nguyen, L. T., Schmidt, H. A., Von Haeseler, A. & Minh, B. Q. IQ-TREE: a fast and effective stochastic algorithm for estimating maximum-likelihood phylogenies. Mol. Biol. Evol. 32, 268–274 (2015).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 113.

    Puttick, M. N. MCMCtreeR: functions to prepare MCMCtree analyses and visualize posterior ages on trees. Bioinformatics 35, 5321–5322 (2019).

    CAS 
    PubMed 

    Google Scholar 

  • 114.

    Yang, Z. H. PAML: a program package for phylogenetic analysis by maximum likelihood. Bioinformatics 13, 555–556 (1997).

    CAS 

    Google Scholar 

  • 115.

    Han, M. V., Thomas, G. W. C., Lugo-Martinez, J. & Hahn, M. W. Estimating gene gain and loss rates in the presence of error in genome assembly and annotation using CAFE 3. Mol. Biol. Evol. 30, 1987–1997 (2013).

    CAS 
    PubMed 

    Google Scholar 

  • 116.

    Larkin, M. A. et al. ClustalW and ClustalX version 2. Bioinformatics 23, 2947–2948 (2007).

    CAS 
    PubMed 

    Google Scholar 

  • 117.

    Subramanian, B., Gao, S., Lercher, M. J., Hu, S. & Chen, W. H. Evolview v3: a webserver for visualization, annotation, and management of phylogenetic trees. Nucleic Acids Res 47, W270–W275 (2019).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 118.

    Bolger, A. M., Lohse, M. & Usadel, B. Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics 30, 2114–2120 (2014).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 119.

    Kim, D., Landmead, B. & Salzberg, S. L. HISAT: a fast spliced aligner with low memory requirements. Nat. Methods 12, 357–360 (2015).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 120.

    Pertea, M. et al. StringTie enables improved reconstruction of a transcriptome from RNA-seq reads. Nat. Biotechnol. 33, 290–295 (2015).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 121.

    Langmead, B. & Salzberg, S. L. Fast gapped-read alignment with Bowtie 2. Nat. Methods 9, 357–359 (2012).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 122.

    Li, B. & Dewey, C. N. RSEM: accurate transcript quantification from RNA-Seq data with or without a reference genome. BMC Bioinform. 12, 323 (2011).

    CAS 

    Google Scholar 


  • Source: Ecology - nature.com

    Courtney Lesoon and Elizabeth Yarina win Fulbright-Hays Scholarships

    Overcoming a bottleneck in carbon dioxide conversion